
A-ftS" 593 DESIGN IMPLEMENTATION AND EVALUATION OF AN OPERATING 14
r SYSTEM FOR A NETWORK OF TRRNSPUTERS(U) NAVAL
I POSTGRADUATE SCHOOL MONTEREY CA A 0 CORDEIRO

mhhhW1FED EEOh5/EEE

1111 1112-
S1.8

:iI~ [fllffJ hIfl.6

MICROCOPY RESOLUTION TIST 'CHART

'p

*l . . ."

UPiC FILE CORI

NAVAL POSTGRADUATE SCHOOL
Monterey, California

A DTIC",
E'LEcTEI'x

THESIS

.5

5.

DESIGN, IMPLEMENTATION AND EVALUATION .,1
OF AN OPERATING SYSTEM ,

FOR A NETWORK OF TRANSPUTERS .

by ,

Mauricio de Menezes/Cordeiro t

J..

June 1987 -

Thesis Advisor Uno R. Kodres.,
A1s

,5

I,'
8 aLECTI

UNCLASSIFIED
sicustry CLASSIFCAION OF THIS PAGE - / - '

REPORT DOCUMENTATION PAGE
I& REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED

Ja SECURITY CLASSIFICATION AUTHORITY I DISTRIBUTION/ AVAILABILITY Of REPORT

2b OECLASSIFICATIONIOO*NGRAOING SCHEDULE Approved for public release; b
Distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION RE.PORT NuV~BER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL ?a NAME 0F MONITORING ORGANIZATION

Naval Postgraduate School 52Va9IaOe Naval Postgraduate School

6c ADORESS {Ciry. State. and ZIP Cod#) 7b ADORE SS (Coty, State. and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

8& NAME OF FUNDING iSPONSORING r8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION PIUM8ER
O~RGANIZATION [(it applicabio)

8c ADDRESS (Cory. State, ad Io Code) 10 SOIJRCE OF FUjNDING NUMBERS

PROGRAM IPROJECT TASK~ hoRK _,NiT
ELEMENT NO NO NO ACCIESSOP NO

T~t.~(Iclde ecnt Cju,~ct~nl DESIGN, IMPLEMENTATION AND EVALUATION OF AN OPERATING

SYSTEM FOR A NETWORK OF TRANSPUTERS

* ~ESON~ ATHO(S) CORDEIRO, MAURICIO DE MENEZES

la RE; C;QPORT 3b T'M[COVERED 114 DATE OF REPORT (Year M~onthi Dy) PAGjE (0,Nr
Master's Thesis FROM TO j June 1987 (s163 -

6SLP-'I.E.ENTARY NOTATION

COSATI CODES 19 SUBJECT TERPAS (Continue on 'even#If dnqoceLujr and odenrl1y by block nlumber)

9 ELD JGROUP SUB GROUP Transputer,Operating System, OCCAM, TDS, Network,
- I Concurrent Processing, Distributed System, Routing,

I Message Communications .or-

This thesis presents the Design, Implementation and Evaluation of an Operating

Svstemn for a Netwvork of Transputers, with miain 1 ocus on the Communication

Subsystem. It also introduces the novice to the Transputer Development Systcmn

(TDS), and suggests a sequence for developing applications.
All the programs and examples presented In this thesis %vcre implemented in the

OCCAM I Programming Language, and using the Transputer lDevclopment S% stemi
(TDS-D3600), running under the VAX,'VMS Operating Sy stemn at the al
Postgraduate School (NPS).

iO 0~ y''3UON, AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

CM _NCLAS55LFTE D/lNI.MItED Q SAME AS ROT 00TI USERS UNCLASSIFIED
Ila %Am(OF RESPONSIBLE INDI~VIDUAL Jib TELEPHONE (Irsorude Aree Code)122c O~fIA S-M80t

Prof. KODRES, UNO R. (408) 646-2197 Code 52Kr

OD FORM 1473. 84 MARINAReIO a @.~ jIeIhI~ SECURITY CLASSIC-Al'ON Of '-.5 PAC

All other editions as0 obsoletet

% %

Approved for public release; distribution is unlimited.

Design, Implementation and Evaluation
of an Operating System

for a Network of Transputers

by

Mauricio de Menezes Cordeiro
Lieutenant, Brazilian Nav"

B.S., Brazilian Naval Academy, 1976

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1987

Author: Q-A L47O)1'
Mauricio de Mepezes qordeiro

Approved by: . /Le d(-t-'
Uno R. Kodres, Thesis Advisor

Daniel L'. Davis, Sccond Rcader

Vincent V. Lon, Chairm"an,
Department of /Computer Science

Knealc IThomas , sl,
Dean of Information and

2

, %i

ABSTRACT

This thesis presents the Design, Implementation and Evaluation of an Operating -"

System for a Network of Transputers, with main focus on the Communication

Subsystem. It also introduces the novice to the Transputer Development System

(TDS), and suggests a sequence for developing applications.

All the programs and examples presented in this thesis were implemented in the

OCCAM I Programming Language, and using the Transputer Development System .-

(TDS-D600), running under the VAX/VMS Operating System at the Naval

Postgraduate School (NPS).

P d'

ACCe>' r I

lOT;i' , - -''

-'

3 -*1

a0

UV,

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may

not have been exercised for all cases of interest. While every effort has been made,

within the time available, to ensure that the programs are free of computational and

logic errors, they cannot be considered validated. Any application of these programs

without additional verification is at the risk of the user.

Many terms used in this thesis are registered trademarks of commercial products.

Rather than attempting to cite each individual occurrence of a trademark, all registered

trademarks appearing in this thesis are listed below the firm holding the trademark:

Digital Equipment Corporation, Maynard, Massachusetts
VAX 11(780 Minicomputer

VMS Operating System

VT-220 Terminal
VT- 100 Terminal

Digital Research, Pacific Grove, California
CP/M 86 Operating System

INMOS Group of Companies, Bristol, UK

Transputer

Occam

INMOS

IMS T414

IMS T800

TDS

OPS

Intel Corporation, Santa Clara, California

iSBC 86/12A Single Board Computer

Multibus

8086 Microprocessor

Microsoft Corporation, Bellevue, Washington

DOS Operating System

Xerox Corporation, Stanford, Connecticut

Ethernet

44

4i 4
.~~ ~ ~~ ~-, . . -.--.-..... *.. -. . .*' . ,..,.-.* .)....

Zenith Data Systems Corporation, St. Joseph, Michigan

Z-248 Microcomputer

5
-PIN

TABLE OF CONTENTS

INTRODUCTION.. 13

A. BACKGROUND 13

1. The AEGIS Project.................................. 13

2. Transputer Review 14

3. The Transputers at NPS.............................. 17

B. PURPOSE OF THIS THESIS............................. 18
C. THESIS ORGANIZATION.............................. 19

I. A QUICK TDS TUTORIAL 21

A. WHAT IS TDS ?. 21

B. STRUCTU RE OF A TDS PROGRAM 23

C. RECOMMENDED SEQUENCE WHEN DEVELOPING
APPLICATIONS 26

D. CONVERTING OPS INTO ONE-TRANSPUTER TDS
PROGRAM .. 29

E. MAPPING FROM ONE TO MANY TRANSPUTERS 30

F. CONFIGURING A NETWORK OF TRANSPUTERS 33

G. CUSTOMIZING YOUR ENVIRONMENT..................3J9

II. OPERATING SYSTEM DESIGN.............................. 41

A. WHY AN OPERATING SYSTEM ? 41

B. THE DESIGN .. 42

1. Input Handler 49

2. Output Handler 50

3. Screen Handler..................................... 5 0

IV. OPERATING SYSTEM IMPLEMENTATION 52

A. INPUT HANDLER 52
B. OUTPUT HANDLER 55
C. SCREEN HANDLER 59

.6

I

D. THE ROUTING TABLE 60
E. OPERATING SYSTEM LIBRARY ROUTINES 62

1. The Send Routine 62
2. The Receive Routine 64
3. The Root Library (ROOTLIB.TDS) 65
4. The Remote Library (REMOTE_LIB.TDS) 65

V. EVALUATION OF THE OPERATING SYSTEM 67
A. INTRODUCTION 67
B. A BRIEF DESCRIPTION OF THE EVALUATION 67
C. EXPERIMENTAL RESULTS 71

1. Evaluating Direct Communications 71
2. Evaluating Multiple Path Communications 72

D. EFFECT OF THE HEADER SIZE IN THE TRANSFER
R A T E .. 76

E. A CONTROVERSIAL PROBLEM 78

VI. USING THE OPERATING SYSTEM 81
A. INTRODUCTION .. 81
B. THE REQUIRED PROGRAM STRUCTURE 81
C. PROGRAMMING WITH THE OPERATING SYSTEM 83
D. ADVANTAGES OF THE OPERATING SYSTEM 84
E. CUSTOMIZING THE OPERATING SYSTEM 84

VII. CONCLUSIONS AND RECOMMENDATIONS 85
A . CON CLUSION S ... 85
B. RECOMMENDED FOLLOW-ON WORK 86

APPENDIX A: OPS GLOBAL DEFINITIONS (GLOBALDEF.OPS) 88

APPENDIX B: TDS GLOBAL DEFINITIONS (GLOBALDEF.TDS) 90

APPENDIX C: TDS LIBRARY ROUTINES WITHOUT OPERATING
SYSTEM (LIBRARY.TDS) 91

APPENDIX D: THE OPERATING SYSTEM FOR THE ROOT
TRANSPUTER (ROOTOS.TDS) 104

7

p , ' " "e . , . / . " " + + " ' " " " -" "," " " ° " " " " , ° o , ,/

, ., , ..+ .+ ., ,; .. .,, ,., ., .. ., .., , , ,. . .. , .. , ., ,. , . ., , .. , ... : :. -. ,- :. :. .:. .:

7417IPWYOV In V vRv~T7-Tlr v-r i.,vwvwm %IV wvqw.,v ,,% Kr"ILIc VX-Wx.? NE 1 Z1I

APPENDIX E: THE OPERATING SYSTEM FOR REMOTE
TRANSPUTERS (REMOTE OS.TDS) 127

APPENDIX F: THE EVALUATION PROGRAM FOR THE

OPERATING SYSTEM (EVALOS.TDS) 143

LIST OF REFERENCES.. 158

BIBLIOGRAPHY .. 159

INITIAL DISTRIBUTION LIST...................................... 160

8

'p0

'd"

LIST OF TABLES

1. TRANSFER RATES WITHOUT THE OPERATING
SYSTEM BETWEEN ADJACENT TRANSPUTERS (KBITS/SEC) 72

2. TRANSFER RATES WITH THE OPERATING SYSTEM BETWEEN
ADJACENT TRANSPUTERS (KBITS/SEC) 73

3. TRANSFER RATES WITH THE OPERATING SYSTEM (HIGH
PRI) BETWEEN ADJACENT TRANSPUTERS (KBITS/SEC) 73

4. TRANSFER RATES WITH THE OPERATING SYSTEM IN 2 HOPS
(K B IT S/SEC) .. 75

5. TRANSFER RATES WITH THE OPERATING SYSTEM IN 3 HOPS
(K B IT SiSE C) .. 7 6

6. TRANSFER RATES WITH TI-W OPERATING SYSTEM IN 4 HOPS
(K B IT S,;SE C) .. 76

7. TRANSFER RATES WITH THE NEW HEADER BETWEEN
ADJACENT TRANSPUTERS (KBITS/SEC) 78

9

17,

LIST OF FIGURES

1.1 T414 and O PS Tim ers ... 15

1.2 T414 M em ory Space .. 16

1.3 B003 board and its fixed connectivity 18

2.1 DEC VT-100 Keyboard Layout 21
2.2 Program Structure in TD S ... 24

2.3 A Network with four Clusters 28
2.4 O PS program .. 31

2.5 C onverting to TD S ... 32

2.6 The Previous Program Mapped onto many Transputers 33

2.7 Steps 1, 2 and 3 of a Configuration 36

2.8 The Complete Configuration 37

2.9 A Simplified Configuration ... 38
2.10 File extensions ... 40

2.11 Sample login.com for the VAX/VMS 40

3.1 The M essage Header Format .. 43
3.2 The Possible Communications Paths 44

3.3 An OCCA M Limitation ... 46

3.4 A Sample Channel-id Table .. 47

3.5 U ser A bstraction ... 48
.6 Operating System Block Diagram 19

4.1 A General View of the Input Handler 52
4.2 Input Handler Source Code (Partial) 54

4.3 The O utput H andler 56
-1.4 The Expected Behaviour

-1. T h Ex ect d B hav our 57

4.5 The A ctual Behaviour ... 57
4.6 The Parallel Solution .. 58

4.7 Checking the Routing Table for Cycles 63

5.1 The Configuration used in the Evaluation Process 68

0

10

!I
:.: ".""."""-" "" -'.

5.2 The Transfer Program in the Root Transputer (Partial) 70

5.3 Transfer Rates with Direct Communications 74

5.4 Transfer Rates with Multiple Retransmissions 77

5.5 Effect of the Header Size in the Transfer Rate 79

6.1 The Program Structure when using the Operating System 82

I

11,

I2

ACKNOWLEDGEMENTS

Dedico esta tese *aminha esposa Cristina e aos incus filhos Igor e Lucas, pelo

amor, compreensio e carinho dispensados durante toda esta dura jornada.

Aproveito a oportunidade, para expressar todo o meu amor e reconhecimento a

meus pais Franklin e Helena, sem os quais esta tese e eu proprio n~o existiriamos.

minha sogra Maria, o nieu especial e sincero muito obrigado, por todo o apoio

e carinho dispensados ai minha familia, por ocasi~o do nascimento de meus dois filhos.

To my thesis advisor, Professor Uno Kodres, I would like to thanks for all the
confidence and support, which has never stopped, even when hie was passing through

some health adversities.

Finally, I would like to send a special thanks to the Technical Staff in the

Computer Science Department, especially to Michael Williams, Walter Lanidakcr,

Russell Wallen and Rosalie Johnson, for all the support we were given throughout tis

thesis.

12

%" %

.11

I. INTRODUCTION

A. BACKGROUND
'-

1. The AEGIS Project

The research interests of the NPS AEGIS project embraces a broad spectrum

of topical areas within the Computer Science Department. Initially found in the late

1970's it had the primary mission of investigating alternative architectures for the

AEGIS Combat System, which are being deployed on board of the U.S. Ticonderoga

class (CG-47), whose central unit is the 3D Phased Array Radar AN/SPY-lA.

The basic thrust of this research is the belief that the same software system

running under the old and expensives AN UYK-7 computers could run equally well. if

not more efficiently, in the commercially available VLSI microprocessors.

A sequence of projects have culminated in the successful Real Time Cluster

Star Architecture (RTC).

The RTC is a multiple microprocessor system with a hierarchical bus

structure resembling the Carnegie Mellon Cm architecture. RTC is specifically

suited for the development and implementation of real time, concurrent sensor data

gathering, display and control systems, which are some of the typical applications in a

Weapons System [Ref 11.

Presently, the RTC* is composed of two clusters, each containing four INTEL

Single Board Computers based on the 8086 microprocessor. These single boards have

from 64K up to 128Kbytes of dual port dynamic RAM being shared among each

cluster, with part of this memory space being virtually shared between clusters. All the

boards are connected to the INTEL Multibus through an interface control logic unit

and the communication between clusters is done via an ETHERNET link.

The software system to support the RTC was done in parallel with the

hardware design and after six years or iterative engineering, retinement and extensions.

it evolved to the E-MCORTEX operating system, which was integrated in 1984 as a

system software layer over the multiuser CPM 86 operating system [Ref. 2: p. 101.

As time progresses, the old AN/UYK-7"s in the AEGIS system are being

replaced by the new AN/UYK-43's, and as expected, in probably less than one decade

they will not be capable of handling the increasing demand for some more complex

software systems.
13

13 -
'p

Sq

- "....-... ..:.? " ..'..- ".-.-..,..-..'.--- .'- - - -- . " .. - .. -.- .. i. : --.,'. .: i.-." .. : .. o

That is why the NPS AEGIS Modeling Project, trying to keep up with all the

upcoming new technologies, has added to its Laboratory a network of eighteen

transputers, which can be very easily connected in various configurations, to allow the

user to evaluate and compare them, in a performance basis with the RTC

architecture.

2. Transputer Review

The term transputer is an acronym for "transistor computer' where it reflects

the ability of this device to be used as system's building block, much like the transistor

was in the past. The nice feature of the transputer is that it adds a new level of

abstraction, which provides a very simple way to design concurrent systems.

As a formal definition we could state that a transputer is a single chip

microcomputer with its local memory and with four independent links for connecting

one transputer to another. The links may be thought of as small special purpose

processors which steal no cycles from the main cpu, in such a way that we could have

all four links and the cpu working at the same time, without degrading the performance
of the program's execution [Ref. 31.

The interprocess communications are done through channels, using a strictly

message passage schema where shared memory is not allowed. Each link provides two

channels, one in each direction. A message is transmitted as a sequence of -bytes and

the way the transputers know when the other transputer is ready to receive a message

is as follows: the first transputer to become ready transmits the first byte of the

message and once it arrives in the other end, it is stored in the buffer of that link, and

just when that link is ready to receive the next byte an acknowledge signal is sent back.

Each of the links must maintain a buffer of one byte long for this purpose.

The communications between links is bytewise asynchronous and not phase

sensitive, but it is, obviously, bitwise synchronous, otherwise we could not sample the

bits correctly.

a. The processsor and its scheduler

The transputer, IMS T414. is a general purpose 32 bit microprocessor with

a maximum throughput of 10 MIPS.1 It is highly optimized to implement the OCCAM

Programming Language and it has a reduced instruction set, where many of the

instructions are one byte long.

1 It depends on the type of the transputer, more specifically on the internal clock

under which it is running. The following values apply: T414-12 (6 MIPS), T414-15 (7.5
MIPS) and T414-20 (10 MIPS).

14

. . .

The processor supports two priority levels, high and low, and for each of

them it keeps a queue of ready processes. The low priority processes will run only when

there are no high priority processes in the queue.
The OCCAM parallel construct is implemented on a single transputer, by

timeslicing the processes which are ready at any instant in time. A process is

descheduled if it has to wait for communications, timer input or if it completes

processing. Another possibility for descheduling, valid only for low priority processes is
when its timeslice is finished, so that the next in the queue will be activated. Each

timeslice period lasts for approximately 800 microseconds.

b. The T414 Timer

The resolution of the timer.depends on which board we are talking about.

On the B001 the timer has a resolution of 1.6 microseconds per tick, while in the B003
we have 1 microsecond for the high priority processes and 64 microseconds for the low

priority ones. If working with the VAX-VMS the timer ticks every 100 nanoseconds,

but it is updated just every 10 milliseconds.
The value obtained from the timer is a signed integer which wraps around

at MAXINT (231 - = 2147483647) and MININT (- 231 = -2147483648), so that

attention is needed when trying to subtract times. 2 See Figure 1.1 for a summary.

Resolution Half-Cycle
B001 1.6 usec/tick 57.3 min
B003 (High) 1.0 usec/tick 35.8 min
B003 (Low) 64.0 usec/tick 38.2 hrs
OPS (VAX-VMS) 100.0 nsec/tick 3.6 min

Figure 1.1 T414 and OPS Timers.

c. lemory

The T414 can directly access a linear address space of up to 4 Gbytes. The

32 bit wide memory interface uses multiplexed data and address lines and provides a

data rate of up to 25 MBytes/sec.

2A routine called tick.to.time will be provided in the O.S. Library Routines, such

that all the cases will be handled properly.

15

: ." -. %" v ,- r . - . - . ' ". _ ."' .--- .N N '. - . -- " *' ' ~

There is 2Kbytes of on chip memory which provides a maximum data rate

of 80 Mbytes/sec and can be shared among different users through the internal system

bus. The latter value is obtained when using a memory with access time of 50

nanoseconds, but it also varies from transputer to transputer.

The address space of the T414 is signed and byte addressed. It ranges from

#80000000 which is equivalent to MININT, up to #7FFFFFFF which is MAXINT.

The first 2K of memory, in other words, from #80000000 up to #80000800 reference on

chip memory, where the first 72 bytes are reserved for system purposes. See Figure 1.2.

"FrF Top or MEMIORY

#7F T FFF3 BOOTItAP FROM ROMl

0 00400 p PERIPERAL BASE AD It.

* 3000300 TOP ON CHIP MEMORY

9 60000048 MEM START

4 80000020 EVENT

4 6oooootC LIN1C3ifl

8 30000018 LINK2in

0 30000014 LINKlin SYSTEM MEMORY

*60000010 LINKOin

6000C LINK3..t

4 00000006 LI. 2..t
* 80000004 LINKIo.t

* 80000000 LINKO-.t

Figure 1.2 T414 Memory Space.

16

.*%

- .
%2w *.

d. Links

The T414 has four full duplex standard links, each providing two

unidirectional channels. The links can be thought of, as described earlier, as a special

purpose processor which has some DMA block transfer capabilities.

The speeds of the links may be selectable from 10 Mbits/sec or 20
Mbits/sec on the B003 boards, with no choice other than the standard 10 Mbits/sec on

the BOO board. The B003 board has the additional capability of maintaining link 0 at

10 Mbits/sec while the remaining links 1, 2 and 3 are at 20 Mbits. Therefore. -care
must be taken to enforce that both links connecting the BOO and the BOO3 board are
working at the same speed, 10 Mbits,,sec.

3. The Transputers at NPS

As far as hardware goes, we have in our Lab a Transputer Evaluation Module
with four boards B003's. each containing four 32 bit transputers T414-15 (15 MHz)

plus 256Kbytes of dynamic RAM per transputer. The tifth board we have is the BOOI
with a 32 bit transputer T414-12 (12.5 MHz), 64K of dynamic RAM and 128Kbytes of

EPROM containing the bootstrap loader, the memory test and the transparent mode

software. This board is directly connected to the host computer (VAXiVMS in our
case) through a RS-232 serial port and it also provides an additional port for attaching

one monitor.

We also have another board which is the B004, which is placed in one of the
slots of a personal computer Zenith 248. This B004 board contains a 32 bit transputer

T414-15 (15 MHz) and comes with 2Mbytes of dynamic RAM on board. Its basic

function is to provide an interface between the PC and the network of transputers, but
it also allows us to run programs in its transputer. much likely the BOOI. For additional

information about all the above mentioned boards, please refer to their respective

user's manual [Refs. 4,5,61.
It is important to notice that the B003 board does not allow one to have

access to the links 2 and 3 of any of its transputers. They come in a fixed configuration

(see Figure 1.3), where the only links the user can connect however he desires are the
links 0 and 1.

At present we have three software packages on which we can either simulate

or actually generate code for the transputer. They are:

* OCCAM Progamming System (OPS) which runs under the VAX'VMS
Operating System and allows one to simulate the transputer environment, using
the OCCAMI as the primary language. The code generated by the OPS

17

%

i

B008

L LO L3 L

1L3

L 2

.s

L3 t Lem

comile iest thr therms VAX/MSrrehtly Anoe valid te meaSument ian the
Transp gur le n Syste B003D00 board also runs fixer conetviy

cmieirrtVAX/VMSgse, sno thao validpie easurmnsu cnde

made, nor can we run truly multiprocessor programs. As it stands right now it
is just a very good tool for teaching purposes, since it allows many uscrs to run
and test their programs, concurrently. Another use of the OPS would be in the
early stages ofthe design, for checking the correctness of some modules, before
running them on the transputer itself

Transputer Development System (TDS-D600) which also runs Linder the
VAX/VMS Operating System, and whose compiler generates transputer code
which can be later on extracted and downloaded into a transputer network. One
of its differences from the OPS is the configuration part, where a program can
be configured to run in various processors, which are connected in some
specified way. The primary language is still OCCAM I

*Transputer Development System (TDS-D701) which is very similar to the 13600,
although more powerful, and it runs on an IMS B004 board in collaboration
with a small program running under the DOS Operating System in a personal
computer, which provides access to the PC's resources. Its primary language is
OCCAM2 which has data types, floating point arithmetic, among many other
things that are not provided in OCCAM 1.

B. PURPOSE OF THIS THESIS

Since this is one of the First thesis to make use of the transputer hardware. 3 our

mission was to create a user friendly environment, with all the software necessary, (or

future users to develop their application programs.

3We had two previous thesis on transputers, but they were actually designed to
run under the OPS in the VAX, since we had no transputers at the time they were
written [Refs. 7,81.

18

t% %

The tools we are about to describe embraces a library with all the basic I/O

routines, such as output to the screen, input from the keyboard, capability of

formatting the screen and to write and read from VMS files among others. Also we

have developed some utility routines which will allow anyone to dump parts of memory

and to get the real time in a readable format anywhere in the program.

However, the central focus of this thesis is on the design and implementation of a

basic Communications Operating System, which would make it easier to program a

distributed network of transputers. All the effort was made to carry out this task and

after many, many changes, we ended up in a very simple and effective design. We are

not claiming that this is the only one or the best way of doing it, but it is our hope

that it serves as a firm foundation for future and more enhanced implementations.

We also evaluate what is the overhead imposed in the program's execution time,

when running under the Operating System, which constitutes one of the most

important concerns when dealing with real time systems.

Unfortunately, when this thesis was started we didn't have the OCCAM2 version

available to use as our primary language, which would have made life much easier. As

a result we are using PROTO OCCAM or OCCAMI throughout the entire thesis.

which is a very simple but primitive language, with no data types, no channel

protocols, no floating point arithmetic, etc....

As an auxiliary learning tool we will provide for the novice user of the

Transputer Development System for the VAXiVMS, a quick explanation of all its

features, its required program structure, its drawbacks and all the points we found

obscure in the manuals, whose knowledge would have saved us a lot of hours of

reading.

C. THESIS ORGANIZATION

Chapter II begins with a brief overview of the Transputer Development System.

in order to assist the reader in understanding its basic features. Next, we suggest a

sequence for developing applications, where we present a very thorough description of

all the steps involved. Still in this Chapter, we develop a very simple methodology for
configuring a network of transputers. The remainder of Chapter II is devoted to some

general suggestions, in order to make the working environment, as friendly as possible.

Chapter III describes all major design decisions we had to make, in order to

implement the Operating System. The main purpose in doing that, is to provide the

19

a- * °-

reader with a precise conceptual understanding of the system, which would enable him
to perform some major changes in the system, if it is so needed. It also presents a

general block diagram of the Operating System.

Chapter IV describes the implementation of the modules in the Operating

System. The Library Routines are also covered, mainly the "send" and "receive"

routines. A complete guide explaining how to use the routing table is also addressed.

Chapter V evaluates the performance of a program running under the operating

system. All the evaluation is done in a comparison basis with the one made by Vanni

J.F. in his thesis [Ref. 91, where the transputer is completely evaluated. In this Chapter,

we also perform the evaluation of the operating system, when handling multiple hop

communications. At the end of Chapter V, we measure the effect of the header size on

the transfer rates.

Chapter VI basically describes how to use the Operating System, under the user's

point of view. The required program structure is also presented, as well as some hints

in how to program with the operating system.

Chapter VII is the final chapter, which includes the conclusions and some

suggestions for follow-on work.

Appendices A and B includes the global definitions to be used in either OPS or

TDS.

Appendix C contains the file LIBRARY.TDS, with all the available routines to

be used in TDS, without using the operating system.

Appendix D contains the source code for the Operating System in the root

transputer, while Appendix E contains the remote version of it, in other words, the one

which is to be run in remote transputers.

Appendix F describes the evaluation program used to evaluate the Operating

System, and it also serves as a sample example on how to use the operating system.

2

20

I

II. A QUICK TDS TUTORIAL

A. WHAT IS TDS ?

The name TDS stands for "Transputer Development System" and it is basically

built around the concept of "folding".

Its fold editor is the principal interface between the system and the host

computer. It allows the user to insert, edit and delete Occam source text, and to save

this text into a VMS file.

Besides its general and standard editing functions, it also contains a set of ten

utilities and three special functions, which perform extended tasks with a TDS

program.

We will now cover the basics of its folding system, describing all the available

commands. We hope that by now the reader has already been exposed to the editor

tutorial, where all the basics about "folds" is covered. It is also important to notice at

this point, that this editor uses a very unusual sequence of keystrokes and therefbre it

is of primary importance to have the correct terminal driver running under it. We will

assume hereafter that the system we are using is the TDS for the VAX and that our

terminal is the VT-100 or VT-200 (in VT-100 mode), but if that is not the case, please

refer to the TDS Installation Manual [Ref. 10: Section 11.

n=c a .TMuStrrta CMx W..! .!
FUNC 2, TLA14SPUTU COWILS

flm1C s. NkhZ P OCLAM {....
WKSS 4, MALE SC PIODC

n=R s, IITIACT TO FILl

MI .1111150 STABA

MUIC s, SLAtC

"MN S, 19PLACU1
-iOYtrMc e* LIST . l I LF L

WK f, FOLD IwVo [I 1 12CILArT
lo Sr FCOLD

Figure 2.1 DEC VT-100 Keyboard Layout.

21

% ' % , "
%

Besides all the editing features common to all editors, the TDS has in addition

what we call "utilities', which are the following:
0 Utility I (TRANSPUTER CHECK) - It checks the syntax of occam programs,

as well as the consistency of variables and channels used inside PAR constructs.
When dealing with more complex structures like for example nested PARs,
etc...very often we will have to turn off the "UsageCheck" which is found inside
its parameters fold, otherwise it will give us all sorts of error messages.

0 Utility 2 (TRANSPUTER COMPILE) - It compiles PROGRAMs and SCs
PROCs or it may configure an Occam program to run in a network of
transputers. rn addition to the same checking performed by Utility 1, it also
generates code for the transputer, placing it into a fold. Actually, it generates
two folds: the descriptor and the code folds. It shares the same parameters fold

or. with Utility 1.
• Utility 3 (MAKE PROGRAM) - It produces a compilation fold marked as a

main program fold. It should be used only in the outer fold to specify the whole
program to be downloaded into the network. Typically we will have inside such
a fold all the SC folds for each of the transputers being used by that program.
plus the configuration fold which carries all the information regarding the
connectivity of the network.

" Utility 4 (MAKE SC PROC) - It produces a compilation fold marked for
separated compilation. All the processes to be run in a specific transputer must
be placed inside a SC, which will be eventually allocated to that transputer in
the configuration part.

- Utility 5 (DESCRIPTOR INFO) - Provides information about any SC fold. It
uses 1'e descriptor fold to get information such as entrypoint, program size,
etc....

0 Utility 6 (EXTRACT TO FILE) - It extracts the compiled code that lies inside
the "code fold" generated by the compiler and exports it to a VMS file. There is
one parameter Cold which prompts the user to enter with a filename to which to
export that code. The defl'ult filename is "ops.tcd".

a Utility 7 (WIRING DIAGRAM) - This utility creates a fold with a textual
description of all the link interconnections needed for the configuration specified
in that program. This utility is, indeed, very helpful when setting up your link
connections.
Utility 8 (SEARCH) - Searchs for a string from the actual cursor position u to

1, the end of the fbld on which it was applied. It doesn't allow the use of' any
wildcard characters.

0 Utility 9 (REPLACE) - Replaces the string we are searching for, by another
string It shares the same parameters fold with the searching utility.

a Utility 0 (LIST) - Produces a printable listing of the contents of a fold and
places it into a VMS file. It prompts the user to enter with a filename.

22

4.%

W- 0rr'79 -I r-4 -X -Fl:1 7 7% VP

Besides the above utilities we have three more special functions which are:

0 Func h (HELP) - Displays a list of all ten utilities provided by the TDS, with a
brief description.

0 Func f(FOLD INFO) - Displays the type of the fold and its contents.

9 Func s (SETUP) - Allows the user to change any of the parameters fold already
instantiated with new values.

Once we have gone through this brief description of what TDS is, we should now
have the feeling that TDS is very closely related to its fold system. Unlikely other
systems where we have a physically separated editor, compiler and linker, in the TDS
we have all in one. Also another good point about this approach is that if you get an

error while compiling you will be placed right at the error in editing mode, and once

ready just call the right utility to compile it again !
The way this editor handles external files is also very unique. What we have to

do is just to open a fold, name it with the filename and extension of the file we want to
be attached to this fold, press the file key PF3 and that is it. That is how it does the

job of linking almost transparent to the user.
Just for the sake of completeness, it is worth mentioning the system files which

are used by the TDS:

* TDSVTI00.OBJ - Transputer Development System for VT-100 terminals.
* TDSVI920.OBJ - Transputer Development System for the TVI-920 terminal.

* TDSTABLE.OBJ - Transputer Development System with table-driven
terminals.

* OPSKRNL.OBJ - TDS Kernel which is identical to the OPS kernel.
* TDSSETUP.COM - It is a VMS command file which sets up the TDS

environment. Must be executed in the beginning of every session.

B. STRUCTURE OF A TDS PROGRAM
In this Section we will cover the basic structure of a TDS program when running

without the Operating System, which will be covered in later Chapters. Any program

intended to run under TDS, in other words, in a transputer network, must have a well
defined structure, which doesn't allow much freedom for changes (see Figure 2.2).

The basic idea is that for each different process to be run in a different
transputer, we must make it a separately compiled unit. The number of parameters
depends on how many hardware links are being used by that process, and also if any
constants are coming as parameters from the configuration part. As we already know,

23

PROGRAM progname
SC transputer.l (CHAN A,B,C,D,E,F,G,H)

PROC transputer.1 =

... lobal definitions. library routines
.. PROC terminal.driver
... PROC user.1
PAR

terminal, driver
user.1:

SC transputer.2 (CHAN A,B,C,D,E,F,G,H)
PROC transputer.2 =

.lobal definitions
library routines
PROC user.2* SEQ

user.2:

SC transputer.n (CHAN A,B,C,D,E,F,G,H)
PROC transputer.n =

.. lobal definitions
ibrary routines... PROC user.n

SEQ
user.n:

... configuration declarations

PROCESSOR 1
... channel placements
transputer.1 (...placed channels...)PROCESSOR 2
... channel placements
transputer.2 (...placed channels...)

0
o
0

PROCESSOR n
... channel placements
transputer.n (...placed channels...)

Figure 2.2 Program Structure in TDS.

the B003 board has some links which are hardwired, providing no access to them.

These channels need not be placed in the configuration.

Inside each SC we should create a fold with the most used definitions and

declarations (see Appendix B). Similarly, the library fold (see Appendix C) should

24

contain some often needed routines such as I/O routines and other utilities. Our

suggestion is that all useful routines should be included in this fold, as they are created.

The approach we have taken is to make them filed folds in such a way that whenever

you make a new program, all you have to do is create two new folds and attach those

files to them.

The sequence of steps to attach these files in our program is the following:

1. Make sure you have these files in your working directory.

2. Open a fold inside the program you are working on.

3. Name this fold with the name of the file you want to attach.

.4. File this fold by pressing PF3 on the VT-100 terminal.

5. If you have some limitation in memory or if you are not going to use all the
routines and definitions that are in there, you should unfile those folds in order
to not interfere with the original contents and proceed with the desired
modifications. This step as we can see is an optional step and is just carried out
for memory savings and readability purposes.

As depicted in Figure 2.2, the third fold inside the SC PROC is the terminal

driver, which is crucial if we are using screen outputs or keyboard inputs. It defines

hardware memory locations which represent uart (universal asynchronous receiver-

transmitter) registers, such as mode register, status regis. . command register, etc....

All of these are defined as offsets to the peripheral base addess which is #80040000.

Its basic functions are to reset the uart which we are going to work with, 4 and to

define the baud rate for communications between the processor and the monitor. The

first one is accomplished by the procedure reset.uart and since it takes a while for the

uart to become ready, a built-rn delay is provided inside this procedure.

The terminal driver is always ready either to receive a character typed at the

keyboard or send something to the screen. If you check the code it is clear that both

tasks are just performed after the uart receives a tx.ready or a rx.ready in the status

register. Furthermore, if the uart does not receive either flag within 5.12 seconds, the

uart is considered to have failed and the terminal driver is exited without further notice!

The reason I am teiling you this is because we had some intermittent problems in ,he

very beginning of our research, which were very nasty to isolate, and ended up being a

problem in the uart.

4 We have two uarts, the uart A is connected to the terminal and uart B to the

host computer.

25

J - - -- ,I

It is also worth mentioning that unlike OPS, where we must send the "end of

* buffer" ascii code at the end of the message we are going to output to the screen, in

*' TDS we don't have to.

The terminal driver must be placed in PAR or PRI PAR with the user process in

order to work properly. The choice of either one construct is not always clear, and it is

* intimately related with performance, but the unwary use of it may bring up subtle

points when dealing with complex programs with nested PARs and PRI PARs, so that

the suggested approach is to make your entire program with no PRI constructs and

* just after it has been proved correct, you should assign the priorities where needed.

In the PROC so called "user.n', we have a standard structure like any' other

* programming language such as Pascal, PL,'I, etc... where we have a declarations part. a

bunch of procedures which may be nested at any level and finally the main body of our

outer PROC user.n. The only main difference is that we should make the channel

. placements inside this procedure, attaching the software channels to the hardware '.Inks

of the particular transputer, to which that process is going to be downloadea. Of

course, these placements must be in accordance with the configuration.

As one may notice we have put A, B, C, D, E, F, G and H as channel

parameters for the SCs, but rather than calling them generically as we did, we could

- just as well have put the actual channel's names' as parameters. In doing so, we

wouldn't have to make their placements inside the PROC user.n, since they were going

to be directly related to the order specified in the configuration.

C. RECOMMENDED SEQUENCE WHEN DEVELOPING APPLICATIONS

In this Section we will present a suggested sequence of steps when building

applications, which in our understanding provides the best results mainly when deaiing

with medium to large programs. During this and the next few Sections we will be

dealing with the same basic program in order to give you a better global idea of all the

steps involved.

For the time being assume that the requirements definition and the functional

specification phases are compieted and the architectural design is undervav with all ,ihe

modules and interfaces already defined.

At this point since all the main modules with their interfaces are already

specified, we can have a good idea of how many processors could we use to map our

application, as well as which modules could be placed in different processors.

26

.i

The experimental network will be as depicted in Figure 2.3 where we have 17 ,%

transputers divided into 4 clusters with 4 transputers each, and one root transputer.

The main purpose of this program will be to allow the novice OCCAM programmer to

understand the structure of a TDS program, as well as how to configure a network of 1'

transputers.

In this program the root transputer will be running the so called "hostproc",

which basically receives a character typed on the keyboard and broadcasts it to four

transputers, one in each cluster. Upon receiving the character, these transputers which

will be running the process "route", will route the character to each of the transputers

left in that cluster. Finally, all the recipient transputers will echo back the same

character to the root transputer, so that at the end of the program we will have 12

characters printed on the screen.

The next phase in the traditional software engineering life cycle is the module

design, where all the interfaces between modules should be already defined. The module

design is concerned with internal features of the module like algorithms, data

structures, etc.... In OCCAM terms, the main goal of the module design should be to

implement each module as an SC PROC, where all the communication between

modules must be done via channels.

Once we are ready to start developing our modules, we can either use the OPS or

the TDS. This choice is not very clear, but seems to us that the OPS provides a nice

timesharing environment for the early stages of the design, since we could have many

users developing and testing their programs concurrently, under the VAXiVMS

operating system.

Once all the module design teams have their programs logically correct and

running under OPS, they should be integrated as dictated by the previous architectural

design, but still under the OPS, where all the interfaces between modules could be

checked and validated against typical inputs. As one can see up to this point, no

transputer hardware was necessary, and the reason we are emphasizing this is because

if we had chosen the TDS instead, we would certainly have had a bottleneck problem

in the usage of the B001 board, since it allows just one user at a time. Another main

reason in using OPS lies in the fact that in doing so, we could use the powerful S

debugging tools running under the VMS operating system.

The next step is a controversial one, where we transform an OPS program into a

one-transputer TDS program; it will be entirely covered in the next Section. Although

27

VV

XL.

L' WVVL- ILI U..- VVIi W~ "IL TV WVY YVWY WVYW 1r.v."'rJV's.% .'V *- ' ? I r-.- -'r ~

I0
I1

d0

J

0 0

Figure 2.3 A Network with four Clusters.

28

" ".2"3

it looks like a redundant step, I can assure to you that it is not; many bugs can be

inserted into the program just by changing global definitions, changing library routines,

inserting the now required terminal driver and mainly when trying to use the unique

TDS constructs such as BYTE.SLICE.INPUT, WORD.SLICE.OUTPUT, etc... instead

of the standard OCCAM channels i,,o operations, which are much less efficient (2 to 5

times) than the previous built-in procedures, as fully documented in the Reference 9.

Of course this last change need not be done if you don't have any sort of time

constraints, otherwise they are crucial, since the differences in time are enormous.

If for anything else, this step should be carried out in OPS, just because we have

much better debugging capability than when running in many processors, and keep in

mind that any multiprocessor program adds some new potential sources of errors,

which are not always easily identified!

Finally we should map this one-transputer program onto a n-transputer program.

where this "n" is dictated by the number of modules (SC PROCs) we have. which can

be parallelized, and of course by the availability of processors. This conversion process

will be described in Section E.

As one can realize, this methodology will not help as far as real time debugging

goes, but it will at least provide an effective way to achieve static logical correctness of'

the program.

D. CONVERTING OPS INTO ONE-TRANSPUTER TDS PROGRAM

According to our recommended sequence for developing applications, there will a

point in time when you have developed your program under OPS and want to run it in

a single transputer. In these cases you should proceed by checking all the globai

definitions to see if they are still applicable to a TDS program. lor cxample. the

channel Screen in OPS must be placed at "'1" and the channel Keyboard at 2", but in

TDS this cannot be done, since "1" and "2" will correspond respectively to linklout and

link2out addresses. Actually, in TDS the Screen and Keyboard are standard channels

which communicate with the termnal driver routine and thev don t need to be olaced.

Those are the basic differences between the global definitions for OPS and for TDS,

but for further comparison refer to Appendices A and B, where we present both files. It

is important to notice that these globaldef.ops, global_def.tds, library.ops and the

library.tds files are not required by OCCAM, they constitute just another way of

structuring a program, and making it easier to read and maintain.

29

e.1

Now if we look at Figures 2.4 and 2.5 we can see very easily all the steps

involved in converting the OPS program.5 First, as already suggested in the previous

paragraph, we should change all the global definitions, as well as the library routines

by the TDS equivalents. Second, you should include the terminal driver routine, which

is used just in TDS. and place it in parallel with the main user process which was

running under OPS. Third, change the PROGRLAM fold which is embracing the whole

OPS program by an SC fold, otherwise we won't be able to instantiate it in the

configuration part.

Finally, you have to do the configuration part, and since we are talking about a

program to be run in just one transputer, the configuration becomes extremely simpie,

where we have only the Processor number, followed by the name of the outermost SC

PROC, with no channel parameters, since no external communication is going to take

place. As you may have noticed, we inserted an additional fold of type PROGRAM

embracing the SC and the configuration. This is not necessary, it oniy ailows to

compile and configure at the same time, otherwise you will have to apply the 'compile

utility" in both folds separately.

Once your program is successfully compiled in TDS and it is running properly,

you could then try one more refinement step in order to speed up your program, and

tlat is by using the unique TDS constructs like BYTE.SLICE.INPUT,

WORD.SLICE.OUTPUT, etc ... instead of the standard OCCAM channels io

operations like "chan ?" and "chan !". When you are done, compile and run it again.

E. MAPPING FROM ONE TO MANY TRANSPUTERS

Although we recommend to perform the previous step in every program. we

understand that the experienced programmer may skip that step for small or even

medium programs, but when dealing with more complex programs with intensive

communications between processes, it is strongly advised to run it first in one

transputer, where you have more debugging capabilities and once it is proven to be

'ogicallv correct and with no deadlocks, we should map it onto more transputers.

The boasic steps zo accomplish this mapping are the fbilowing:

1. Remove the outermost SC PROC.

2. Find those SC PROCs which have exactly the same code, differing just by the
name and merge them into just one SC PROC with a common name.

5For convenience we have marked with an asterisk all the changed lines in the

converted TDS program presented in Figure 2.5.

30

PROGRAM echo.all
..PROC echo.all

.. F global-def.ops
...F library.ops

..SC PRO C hostproc (CHAN hostinO,hostinl,hostin2,hostin3,
hostoutO I hostou t1,hostout2,hostout3)

..SC PROC RouteOO (CHAN charin,charout,routetol,routeto2
routeto3 ,echofrom , echofrom2 ,echof rom3 5

..SC PROC RoutelO (CHAN charin charout,routetol,routeto2
route to3 ,echo fromi ,echofrom2 ,echofron3

..SC PROC Route:2O (CHAN charin,charout,routetol,routeto2
routeto3 ,echofroml ,echofrom2 ,echofrom3

..SC PROC Route:3O (CHAN charin~charout,routetol routeto2
route to3 ,echofromi ,echo from2 ,echo from3 5

..SC PROC echochar~l CA hrncaot
SCRC chchro2 (C= charin,charout

... SC PROC echochar3 CA charin,charout
..SC PROC echochari (CHA charin,charout?

... SC PROC echocharl CHAN charm charout
SC PROC echocha rl3 2CHA charincharout
SC PROC echochar13 CHAN charin,cha rout -

..SC PROC echochar2 CHA charin,charout

..SC PROC echochar23 CHAN charin,charout
SC PROC echochar3l CHAN charin,charout
SC PROC echochar32 CHAN charin,charout
SC PROC echochar33 ICHAN charin,charout

... main program echoall
CHAN pipe[32]:

PAR
hostproc (pipe 0 pp pp 4 pp 6

pp 1,pipe[3 2pipe[5] ,pipell
pip. 3I,pipe [],pipe 510 pipe 1)

routelO (p~p ~ 2ief L IA.JC ,ipe[Ij

route10 (~p~ 31 ppe(1P2 ~ ie 7
pipe 1 I,pipe4 Aylpiye[l2j ~piyel 4])

route20 (pipe 5j pipe(J,pipe 2 J,pipe [29

echch p1~pe 2~ pp ejiye 21 ,pipe[30])
re3cr0 (ppe 21 ,pipe 20

echo31arPe pipe 27 ,pipe 26
echochar021 Pipe 1 ppe [10
echocharil pipe 17' 1pie 16
echochar22 pipe 23* ,ipe 22'
echochar32 pipe 29 ppe 28"
echochar03 pipe 13 pipe 1
echocharl3 pipe 19 ,pipe 18

echochar23 pipe 25 ,pipe 24echochar33 pip 31 ipe,30.

Figure 2.4 OPS program.

3. The terminal driver which was in parallel with all the SCs, must now be placed
inside the SC PROC that will1 run in the root transputer.

31

..PROGRAM echo.all
.. SC PROC echo.al.

* F ylobaldef.tds
::.F library .tds

..SC PROC hostproc (CHAN hostin0,hostinl,hostin2,hostin3,
hostoutO ,hostout , hostout2 ,hostout3)

..SC PROC RouteOO (CHAN charin,charout,routetol~routeto2
routeto3 ,echofromi ,echofrom2 ,echofrom3 5

..SC PROC Route1O (CHAN charin,charout,routetol,routeto2
route to3 ,echo from , echofrom2 ,echofrom3 5

..SC PROC Route2O (CHAN charin,charout,routetol,routeto2
route to3 ,echo from , echofrom2 ,echo frorn3

..SC PROC Route30 (CHAN charin,charout~routetol,routeto2
routeto3 ,echofromi ,echofrom2 ,echofrom3 S

... SC PROC echocharol (CHAN charin,chru
SC POC ehocar02 CHAN cai hru

SC PROC echocha0 CHN charin,charout)
SC PROC echochar?? (CMA charin,charout

..SC PROC echochrl CHA charin,cha rout

..SC PROC echocharl3 (CHAN charin,charout
SC PROC echochr? (CHA charin,cha rout
SC PROC echochar2 CHAN charin,charout
SC PROC echochar3 CA charin,cha rout

..SC PROC echochar2l (CHAN charin 'charout

..SC PROC echochar32 ICHAN charincharout

.. SC PROC echochar33 CHAN charin,charout
... main program echoal

CHAN pipe[32]:
PAR

* terminal.driver (Keyboard,Screen port,baud)
hostproc (pipe Oj ,pipe 2 ,pipe [4 ,pipe 6

1i J,pe pipe 5 ip
routeOO (pipe: ip'-% pipe[yip,

pipe.5 Wpipei 20,pipej [22]pipe (21)
route3O (pipe 3; pipe[6(p ipe[517,ipe[29

pipel I pipej6 4 ipe 28],pipe[3]re2char 1pipe ij 971l pi2 81)2
echochapipepipep15e p2peI14

rechr (ppe 21 pipe 20 pye
echocharJl pipe 27 ,pipe 2

echochar02 pipe 11ppipe610
echochar2 p1pe 17 pie[1
echochar22 pipe 231 pie 2
echochar2 pipe 29' pipe 28'
echocharO2 pipe 13 ,pipe 12'

echocharl3 pipe 19 ,pipe 18'

echochar23 Pipe 25 ' pipe 24'
*ec hochar33 Pipe 31 ,pipe 30'

* ... rafi tio
* PROCES R 0

* echo.all

Figure 2.5 Converting to TDS.

4. The global def.tds and library.tds files should now be placed inside each of the

SC PROCs which are going to be downloaded in different transputers.

32

"e, "r

.11

5. Change the configuration to run the program in multiple transputers. This step
will be covered in full detail in the next Section, so that for the time being we
will limit ourselves to write down the header of the fold.

The Step 2 deserves some additional explanation, and that is because when we

are trying to map and run a multiprocessor program in just one processor, the only

way to simulate very closely the structure of such a program is by making copies of all

the procedures that are going to be ultimately downloaded in different processors,

name them differently, and finally run them in parallel in the uniprocessor system.

However. when making the final mapping onto more than one transputer, this

redundancv is no longer needed, and it should be eliminated, in other words, all SCs

containing the same code should be merged into just one, and at loading time the

loader will take care of sending one copy for each processor, according to the

configuration. Although this last step is not mandatory, we strongly recommend .t.

because in doing so you will be reducing substantially the code size to be downloaded

to the transputer network, increasing the readability of the program as well.

... PROGRAM echoall

SC PROC hostproc (CHAN hostinO,hostinl,hostin2,hostin3,
hostoutO,hostoutl,hostout2,hostout3)

SC PROC Route (CHAN charin,charout,routetol,routeto2,
routeto3, echofroml, echofrom2, echofrom3)

... SC PROC echochar (CHAN charin,charout)

... configuration
p

Figure 2.6 The Previous Program Mapped onto many Transputers.

F. CONFIGURING A NETWORK OF TRANSPUTERS

Lets start y asking ourselves what is a configuration? Why is :t necded .'eil.

the configuration is the way we have to specify which process is going to run in which

processor and also to map the interprocessor channels onto the hardware processor

links. This is accomplished by using some OCCAMI extensions like PLACED PAR.

PROCESSOR number, PLACE channell AT address and CHAN channel AT address.

33
,,,,

".5

• " " "1 ' .' . . " .' ' " .
°

°" '.° " " ° " " . " " " ." " • . ." ." " ° 1 ". " - ."° • °j . " . •- " • . ." i " . -. -. . - 0.

The code for any processor must be contained in a single SC PROC and the
processor number can be any valid integer, which is just a logical identifier of that

processor. However, the first processor to be declared must be always the root

transputer, in other words, the processor connected to the host computer, which is the

one responsible for bootstrapping and loading the code in the entire network.

-," Each of the SC PROCs may be instantiated on any number of processors in the

network, although it is exported from the host to the root just once. Further copies will

be provided and sent by the root transputer to the others in the network.

We have two ways of attaching software channels to hardware links, one is at the

program level and uses the CHAN AT statement, and the second is with the PLACE

AT statement which is used at the configuration level. The first one is optional, but if

we don't use it we must declare the channels explicitly as formal parameters to the SC,

and they will be mapped to the actual parameters, at the time that SC 's called or

instantiated at the configuration 'evei. On the other hand, if we decide to use the

CHAN AT statement inside our program. the parameters to the SC PROC can be i

any order and can have any name; the only thing that will be checked by the compiler

is the match of the number of formal against the number of actual parameters. If you

look back in our Figure 2.2 you will notice that we have used channels A. B, C. D. E.

F, G and H as formal parameters, what suggest to us that we have to ase some CHAN

AT statements inside our process "user.n".

If there is a requirement to connect two links from the same processor, a soft

channel must be used.

A network configuration can be viewed as a PROGRAM consisting of a
coilection of SC PROCs which are instantiated from inside some PLACED P..\R

construct. SCs at this level must have just CIAN or VALLE types as lormal

parameters.

Let's go now through the configuration of our old program echo.all where all

these steps will be made much clearer for you. Usually. after deciding how many

parallel processes -ou are ,oing to have and vow many nrocessors ,ou are goinr lo

need, the next step is to detine how they will be connected in a very broad sense. So,

let's suppose we want to run the echo.all program in the network presented in the

Figure 2.3.

Once the previous base steps have been accomplished, we suggest the following

sequence of steps in order to properly configure a network of transputers:

I. Number all the transputers using a structured ordering schema (see Figure 2.7).

34

V .

2. Name the channels of the links used 6 to connect the different transputers. We
suggest the use of an array of channels because it will allow you to make use of
replicators as we will see later (see Figure 2.7).

3. Place the correct process in each of the transputers in the network (see Figure
2.7).

4. Start making the placements for all the transputers in the network, just by
reading directly from your sketch (see Figure 2.8).

5. Instantiate the procedures such that the number of actual parameters matches
exactly the number of formal parameters in the SC PROC. The order is
irrelevant if we are also making the link placements inside the SC PROC.

As demonstrated, the configuration is a very simple matter if we follow the

suggested steps, but sometimes when we have more than one processor executing the

same process, it is very likely that we will be able to recognize some fixed pattern in

their connectivity, which will allow us to simplify the configuration by using some

PLACED PAR replicators. That is why in the first and second steps we have suggested

to use a structured ordering schema for the transputer number and an array of

channels for the channel names. Now it is just a matter of finding a fixed pattern

between the channel index, transputer number and its link number. Finally, after some

reasoning, we were able to find an equivalent configuration which is showed in Figure

2.9. A further simplification could be to take out the placements of those hardwired

links in the B003 board, but this will be left as exercise for the reader.

This extra step is more an adornment than anything else, but it is strongly

recommended when dealing with very large networks, because in doing so we will

provide a better picture of our entire network. An experienced OCCAM prograrnmer

just by looking at the configuration, can have a pretty good idea of the connectivity of

the entire network, in other words, if it uses a tree structure, a pipeline, a ring, etc....

This feeling will be almost impossible if the processors are declared one at the time.

Two facts are important in this analysis, the first is to realize that no

simplification would be possible if there were no processors running the same process

and the second is to understand that this embellishment in the configuration is not

mandatory.

One of the points that we have just stated but didn't cover in detail was the
division of a program in a parallel number of processes. It is obvious that not every

problem can be partitioned into smaller tasks to be carried out by different processors,

6The channels from the hardwired links in the B003 board, do not need to be
placed in the configuration part.

35

p

0-

• . " ". € . . ,. . qo o °o' o % .. • .o o . . o. " ° % -. * - ' o " ° °. * ' • • . -

7 CCHOCRAR

Figure 2 Se1, 2ad3o oniuain

[23] 22] 2 (236

20 23

U- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 2 *. S -CH L A

l-

Uw-

PLACED PAR
PROCESSOR 100

PLACE pipeO AT linkOin
PLACE pipe 1 AT link0outPLACE pi e'2' AT linklin
PLACE pipe.3' AT linklout

PLACE pipe 4 AT link2in
PLACE pipe 5 AT link2out
PLACE pipe 6 AT link3in
PLACE pipe 7 AT link3out

hostproc (pipe [0] ,pipe [2] ,pipef4] ,pipe [6]
pipel] ,pipet3 ,pipeL5] ,pipe[7]5

PROCESSOR 00
?LACE pipe I AT linkOin
PLACE pipe 0 AT link0out
PLACE pipe 11 AT linklin
PLACE pipe 1 AT linklout
PLACE nioe 81 AT link2in
PLACE kipe 9] AT link2out U-PLACE o~pe 2' T link3in
PLACE kipe,13] AT link3out

route (pipe[l],pipe[O]pipe[9],ie[l].pipe[1 1 ,p e [8] ,pipe [0]pipe [12])

PROCESSOR 10
PLACE pipe 3] AT link0in
PLACE pipe 2] AT link0out
PLACE pipe' 16 AT linklin
PLACE pipe[17] AT linklout
PLACE pipe.14] AT link2in
PLACE pipe 15. AT link2out
PLACE pipe[18] AT link3in
PLACE pipe[19] AT link3out

route (pipe[31 pipe[2], ipe[151,3ipe17,pipe[19 1,pipe[[]pipe([]pipe [18]).[

PROCESSOR 32
PLACE pipe [29] AT linklin 0
PLACE pipe[28 AT linklout

echochar (pipe[29],pipe[28])

PROCESSOR 33
PLACE pipe 31] AT link2in
PLACE pipe[30] AT link2out

echochar (pipe[31],pipe[30])

Figure 2.8 The Complete Configuration.

37

W, -W W ' -V 4.4R

PLACED PAR
PROCESSOR 100

PLACE pipe"O AT link~in
PLACE pip AT link~out
PLACE pipe.2 AT linklin
PLACE pipe 3' AT linklout
PLACE pipe 4' AT link2in
PLACE pipe 5: AT link2out
PLACE pipe 6 AT link3in
PLACE pipe .7 AT link3out

hostproc (pipe [0 pipe[2],pipe [4] pipe[I],~

PLACED PAR j = [0 FOR 4]
PROCESSOR 1O0

PLACE oipe 2*+1 T link~in
PLACE kipe2*i 1AT Jlink~out
PLACE pipe 10+ (6*j)] AT linklin
PLACE pipe 11+ 6'*) AT linklout
PLACE Dipe 8+(6*j AT link2in
PLACE bipe 9+(*4' AT link2out
PLACE oipe 12+(6w i AT ljnk3in
PLACE pipe 13+(6* J) AT 4Link3out

route (pipe [(2*)+1. pipe[2*] ,pipe +G
pipe 11+ 6'* f ,pape[1. ~ippe e
pipe 10+ 6*] 1,pipe[12+

PLACED PAR i = 10 FOR 4]
PROCESSOR (10wi)+1
PLACE pipe 9+ (6'-i) AT link3in
PLAC pieL8+R(*i)] AT link3out

echochar (pipe[9+(6*i)],pipe[8+(6*i)])

PLACED PAR i =rOj FOR 4]
PROCESSOR (10 1)+2
PLACE pipe 11+ (6*i) AT linklin
PLACE pipe 10+ (6li AT linklout

echochar (pipe[11+(6*i)] ,pipe[10+(6*i)])

PLACED PAR i [0FR4
PROCESSOR 10 i4)+3
PLACE7 oine 13+('6* i) AT link2in
PLACE kie 12+(6*i) AT link~lout

echochar (pipe[13+(6*i)] ,pipe[12+(6*i)])

Figure 2.9 A\ Simplified Configuration.

but even if they could, at the --ctual state of the art, there is no automatic machine

where we put the entire program as input and the machine would generate an optimal

division of processes to be parallelied.

38

As a conclusion we should mention that this whole configuration procedure is a
very simple one, even for very large and complex systems, and furthermore, the

program can be developed with little or no thought to such matters and then, the
required configuration can be performed after the program logic is proven to be
correct. It is in this way that large and complex programs can be written while the

actual hardware is still in paper design.
Therefore, the key idea is that configuration does not affect the logical behavior

of a program. It only enables a program to be arranged so that its performance

requirements are met.

G. CUSTOMIZING YOUR ENVIRONMENT
When dealing with either OPS or TDS, it is extremely important to create a

friendly environment to work, otherwise you will spend most of your time performing

unnecessary bookkeeping. The main reason for that is because a very big number of

files is created for each complete cycle of a program, 7 and since the default filenames
for some of the above operations are pretty vague, it is important to define a more

strict file naming rule. Some other areas are also affected by the lack of a consistent
naming rule, for example, OPS and TDS programs are quite different but both use the

OCCAM programming language, so that if we use the traditional file naming rules, we
would end up with some name followed by the extension OCC for both programs,

which is not recommended by obvious reasons.
For all these reasons we have decided to make up our own file naming rules,

which are described in Figure 2.10.

When you apply the utility to get a printout of an OPS or TDS program, all the

folds are opened and they come up as "--", which is exactly identical to a comment in

OCCAMI, so that to avoid confusion we will always use comments with "---" instead

of"--". This way, by looking at the printout, we will be able to very easily differentiate

a fold from a comment.

Another decision we had to make was regarding the global definitions and the
library routines each program was using. It was really messy to make a program,
because we had to pick up routines and definitions from different places, and finally
put them inside our program, so that we decided to concentrate all in four files so
called global_deftds, globaldef.ops, library.tds and library.ops.

7For a cycle we mean the phases of editing, compiling, linking, extracting and
printing.

39

. TDS -. source code of a TDS program

.OPS - source code of an OPS program

. 0CC - source code can be either for TDS or OPS

. LST - printable version of a TDS program

. LIS - printable version of a OPS program

. TCD - extracted transputer code (TDS)

. EXE executable VAX code (GPS)

.OBJ - relocatable VAX code (OPS)

* uSc - descriptor information

.CDE - non extracted transputer code

Figure 2. 10 File extensions.

As a final step towards the customization of our environment we have made a

login.com file for the VAX/VMS, where most of the commands are PC-like. See Figure
2.11.

$ @draO: Coccamlopssetup
$ @draO: Coccam.tdsdir~tdssetup

I set dir Coccam.brasil]/version-limit:=20

prot set protection = (owner:rgroup:r,world:r)

prot set prot = (o:rwed,g:re,w:re)

$ d dir/size=used/width=(filename=281/columns=2

0 cd :== set default

$ md create/dir

S$ up set default E-3

$ty type/page

Figure 2.11 Sample logincom for the VAXiVMS.

40

S

-. . - . ,, - - , - . • - . . - - . - . - .- . . - - . . , - - - , - . . . - , :
": '- ."."."."-" " ", :."...".". -I : " % ".'- , ; J F - ,I ' . "

I-'

III. OPERATING SYSTEM DESIGN

A. WHY AN OPERATING SYSTEM?
As the program complexity increases and more processors are added to the

system. some hardware limitations become more critical and a series of new potential
sources of errors are added to the program. In the transputer case for example, the

four existent output channels will shortly become a bottleneck due to the increasing
demand in communications, forcing the programmer to change .he iogic of his
algorithm to comply with the actual architecture. Another problem that will arise is S

how to route a message to a non ad]acent transputer in the network How to output to

the Screen from a remote transputer"

As widely known, the main purpose of any operating system is zo provide a user
with the ability to use the system or a family of systems, without having to know the

detailed hardware interconnections scheme for each specific system. In the specific case
of the transputer, we have tried to follow this same line of thought, and after some

reasoning, we have reached a very simple model for an operating system for a network

of transputers. In our model, the user will be able to use simple primitives like "send"

and "receive", to perform the necessary -intercommunication between processors. The
main idea behind this approach is to release the user from the obligation of taking care
of the channels placements, and all other implications, which are derived from this
latter one. In other words, the user will not need to be concerned in how the message
will get there.

Another feature, which was included in our model, is the capability of sending
two or more messages in parallel, to the same destination transputer, without having to
assign or allocate several hardware links to handle this communication. The final goal
is to make this another abstraction to the user, where the operating ;ystem would

multipiex the different messages through the same ihardware link, and this does not"
imply inefficiency, since the destination transputer would have to handle the messages
sequentially anyway, afterall it is still a single processor. S

Once we have given sufficient reasons to support our claim, that a sort of basic
operating system for a transputer network is vital, let's go into the other Section where
we will try to cover all the steps of our design, in a very simple and practical way.

41

, . , ,..... . ,-.. % .. ,..,-... ,. . -% .f5. :'J,. ... ' ._. .. % .- -.

- i

B. THE DESIGN

Because of the fact that transputers have only local memory, a first approach and

probably the only one at the current state of the art, was to employ a distributed

operating system. An operating system kernel would reside in each node processor to

supervise the user processes running on the node and to handle message traffic.

The basic part of our design will be towards building an efficient communications

system, but we will also provide some I/O handling, as well as some utilities like getting

the real time, dumping memory, etc..., from "any transputer" in the network, which will

greatly enhance the overall debugging capability of the network, and it will make it

much easier to program.

One of the first design issues to arise was regarding the protocol to be used in

our communication subsystem, more specifically, what kind of information should be

carried by the message header.

The first needed information, and also the most obvious one, is the transputer id

number, which will identify the destination transputer for a message. This number, as

we will see later, must be in accordance with the routing table, since it will be used as

an index to retrieve information from this table.

The second information to be carried by the header is the message size, since we

have decided to support variable length messages. Here we had a trade off between

versatility (variable length), and efficiency (fixed length), but in this case we have

chosen to go towards the first one.

The third header component is not an obvious one, which is the channel id

number. It must be unique8 in the entire system. This channel id will allow the system

to determine within one transputer, which process, and ultimately, which channel is

supposed to receive that message.

Therefore, the header which we will be using throughout our system is four bytes

long and has the format specified in Figure 3.1.

We could have used an integer value, which is also 4 bytes long, to carry all the header

information, but it would take too long to decode it, and besides, the time to output

four bytes with the BYTE.SLICE construct is approximately the same as to output an

integer [Ref. 9]. The difference in decoding time is because with the byte structured

8After looking at the implementation, it will become evident that the uniqueness
of the channel id is a very important requirement, since otherwise it may lead to
dubious results. However, it could be eliminated if we have added another field, the
transputer origin, in the header of our protocol.

42

TD.ASPUTBR CHANNEL BIKU
ID ID BC B

BYTE 4 BYTE 3 BYTE 2 BYTE 1

4j.

I.

Figure 3.1 The Message Header Format.

header we just have to fetch the proper field and we are done, while with the integer

header we will have to perform some additional arithmetic operations like divide,

remainder, etc....

In the introductory Section of this Chapter we have discussed some nice features

to have in our system, but how could we implement them, keeping the entire process as

efficient as we can ? Certainly, the answer at a first glance does not appear to be very

simple, since we can have so many different communications paths as depicted in

Figure 3.2. For example, one internal process of transputer #X could be trying to

communicate with another internal process in the same transputer, or this same

process could be willing to talk to a process in transputer #Y, etc... and keep in mind

that in the worst case we could have "any number" of internal processes trying to

communicate between each other, and "any number" of processes trying to talk to

remote transputers through the four output links, and if that is not bad enough, we

could have the four input links receiving messages either for some process in this

transputer or to be bypassed to some other transputer in the network, and remember

that all this could be happening in parallel, except For the internal processes

communications which would be done in a timeslice fashion, but they could be still

inside a parallel construct.

In the previous paragraph we have said that "any number" of processes could be

trying to output through the four output links in parallel, and this statement deserves

an additional explanation. In the actual OCCAM implementation this could never be

done, because just four software channels could be attached to the four existent output

hardware links, and therefore we could have at most four links trying to output at the

same time, but since it was a design decision to keep the interface between the user

43

I7"

:. TRANSPUTER

input 9 output

links links

Figure 3.2 The Possible Communications Paths.

processes and the hardware channels as abstract as we could, we are going to
* implement this extra feature in the Operating System model. For example, suppose we
* had a case where the algorithm to be implemented had to send two messages in parallel

to some transputer X. If we had decided to use straight OCCAM, although "logically"
a parallel operation is what we want, in practice the programmer would have to either

* ~change the logic of his algorithm because of the above mentioned physical liitations,
or he would have to assign a second hardware link to that same transputer X. what is
not recommended by obvious reasons. Thus, what we tried to do is to take this
preoccupation from the programmer, by building a sublayer of so'tware which would
allow any number of output requests to be placed in parallel, even if they have the

* same transputer as destination.
Lets make up an example, where some transputer is receiving, in parallel, a

* stream of external values from three distinct transputers. It must calculate their totals
* and send them to three parallel processes running in another transputer, using the

remaining link (see Figure 3.3). The current solution to this problem would be to
output the totals in any sequential order with no concern about the order they became
ready, in other words, the first total in the sequence could happen to be the longest to

calculate and as result we would be blocking the other totals to be sent, delaying the

,4

..

entire process. With our new approach, the programmer could maintain the algorithm

logic by sending them all in parallel, and leave to the operating system the task of

multiplexing them through the output link 9 as they became ready. You should argue

that we could have used the "ALT" construct and get the same final result, and that is

partially true when dealing with non adjacent transputers, but the problem is that it

blocks the other processes until that first one is done, therefore, in the extreme case it

could even block them for ever. On the other hand, with the "PAR" construct if some

process is taking too long, it will timeout and the scheduler will put the next ready

process to execute.

It is also worth pointing out, that when we have :nany -ransputers .n 'ie

network, it becomes much more complex, since we won't know whether or not the final

destination is ready to receive that message, so that as a general rule. avoid as much as

you can to use time dependent algorithms, because the" are ver likely to deadlock the

Mstem.

Another decision we had to make was regarding the usage of multiple buffers for

storing incoming and outgoing messages, which were not ready to be received or

delivered. What we were trying to achieve with multiple buffering, was to keep the

communication paths free for any messages which might be tr'ing to bypass that

transputer, in order to get to its final destination.

However, after some thoughts and after making some rough implementations, we

have reached the point where in order to maintain multiple buffers, we would have to

lose the parallelism in the input links, because there was no way to get around using -.

the OCCAMI programming language, and also the overhead imposed to manage the

buffers pool seemed to be very large. turning it to be less efficient than with Just one

buffer. So. in the actual implementation as we will see, any incomng messaae to a

transputer will be stored into the Operating System buffer space, tieing up the channel

where it came from, until it is either consumed by some process in that transputer. or S

bypassed to some other transputer in the network. On the other hand, if it is an

outgoing message. it will be kept in the user's memory space o" he transmittinlc,

transputer, having no effect on the bypassing traffic.

9Have you noticed in Figure 3.3 that we have used an array of channels in our
proposed solution ? The reason for that will become completely clear after reading the
implementation Chapter.

45

02

X'.,.'.-, .1 ".{.% :.".-'.:," .,"--v".q ". -.i 2"')'.''-.'-i i.;.- . .?--- ,--.---"- 2-.2-.--- . 2- -. .-'.-

'P .. 'V 7w. TV 'i -7W.w V. W. V. k ".' 4P d.~'- ~ ' V' ~ - ~ ~ V . ~.

T3

PAR
link0in ? streanio --- from transputer #2
linklrn ? streami --- from transputer #3
link2in ? stream2 --- from transputer #4

evaluating the 3 totals

PROGRAMIER'S INTENTION
(not allowed)

PAR
link3out I totalO --- to transputer #1
link3out I totall --- to transputer #1
link3out I total2 --- to transputer #1

CURRENT SOLUTION

SE?
tink3out ! totalO --- to transputer #1
link3out totail -- to transputer #1
link3out I total2 --- to transputer #1

OUR PROPOSED SOLUTION

SEQ
chan [501 ! totalO --- to transputer #1
chan[60] ! totall --- to transputer #1
chanM[70] total2 --- to transputer #1

Figure 3.3 An OCCAM Limitation.

46
d°

As you can see, we will have to deal with all kinds of mutual exclusion problems,

since we'll have in most of the cases many more parallel requests than available

resources (links), but here is where the transputer architecture, as well as the OCCAM

construct "ALTernate", become very handy. The first one by providing a built-in

process scheduler with two priority levels, a timer and a memory management unit, and

the second by providing a trivial solution to the mutual exclusion problem,' 0 as we will

see later in the next Chapter.

Now arises another problem, how could we route an incoming message to the

correct internal process it is supposed to be routed to ? One solution could be to

create in each transputer a channel-id table in memory (see Figure 3.4). where we

should have all the channels which conmmunicate with external transputers and one id

number associated with each of these channels. Obviously, the id number would have

to be carried by each message using that specific channel.

CHANNELS ID #

outO 10

hostinI 31

from.radar 18

in4 27

Figure 3.4 A Sample Channel-id Table.

Another solution that came up after some unsuccessful trials with the channel-id

table, and also a much better one in our opinion, is the idea of creating an array of

channels, where the id number could be the subscript of the array itself. Simple, is it

not ? Also this decision would make our mutual exclusion handler much simpler, as

you will see later in the implementation Chapter.

1I0 would like to emphasize that as you may recall, this is one of the most

traditional and difficult problems when building operating systems.

47

, % -. . - • - 7_ N . , , , .* " % " - ,,, - . ,, . • • .. - . ..- . "

As you can see, in our abstraction model we will have our Operating System with

the control of all the hardware link communications and with an user interface that will

allow the user processes to communicate with the outside world in a very simple way.

See Figure 3.5.

TRANSPUTER

NODE

input links OPERATING SYSTEM output links

USER INTERFACE

USER

PROCESSES

Figure 3.5 User Abstraction.

Therefore, based upon all the previous design decisions, our Operating System

will present the following characteristics:

* It will support a maximum of 256 transputers in the network, but since we are
using, for convenience, a routing table which supports only 18 entries, it will be
limited to 18 transputers. This can be very easily modified, and it will be
explained in the Section covering the routing table.

* It will support a maximum of 256 user channels active at one time, for
conununications with other transputers. Actual',; this number will drop to 20
channels as well see in the implementation Chapter.

• it has no limit to internal soft channels.

• the maximum message length supported is 64 Kbytes.

As we can see, we have much more than we will really need for most typical

applications, so that our protocol could be very easily modified and optimized. In

Chapter VI we will evaluate two versions of the operating system, one with a 4 byte

header, and the other one with 3 bytes, and we will be able to see, very clearly, the

effect of the header size in the transfer rate.

48

..-" -." ." -... ". '- .'.'.-- , ,m~m~m

Let's now cover more in detail the block components of our Operating System,

as well as all the data and control flow that is going on in there. The major blocks

which compose our Operating System are the Input Handler, the Screen Htandlcr, the

Output Handler and the Operating System Library Routines as depicted in Figure 3.6.

to outpu t link s
,

INPUT HIANDLER
/

LINK 6

BY -P SS
o

H A N D L E R .I ,1 4

LINK I 60
-- 9 r., ,, , , OUTPUT

LINK 7

Fiue36 prtn Sse lckDarm

input linkH

LIK2
OFT

SCREEN

LN

T nt CHANNEL HA o d DLER b

th praigsytmbuir

INPUT
LDNK=

LIBRARY.o

ROUTINES

-------. to .uepu J -

RECEIVE SEND .'

Figure 3.6 Operating System Block Diagram.

1. Input Handler

The Input landlcr is composed of three basic blcks the decoder and bullcr.

the bypass handler and the sotware channel input interface.

There will be one decoder and buffer for each of the four input links and its

function is basically to receive the header, decode it and store the incoming message in

the operating system buffer,

,49,
,

The four bypass handlers will be activated by the respective header decoders,

upon arrival of a message to be bypassed, and then, they will issue a request to the

output handler, using a special soft channel, which will be uniquely identified by the

link from whicn the message is coming and by the link through which the message is

going to be forwarded, to get to its final destination. Once tne output handler accepts

its request, the bypass handler will release the decoder to go ahead with the

retransmission of the message by the desired link.

The software channel input interface will be activated just when the message :s

for that transputer. and it will perform an additional chleck to see if te message is

addressed to the Screen channel. in which case it xill request pernussion to me ,creen

handler to use its controlled resource. However, in both cases it will send the releasing

order back to the decoder, which will send the message either to the screen, or to the

appropriate channel in some waiting process.

2. Output Handler

This module is responsible for enforcing mutual exclusion in the four output

links. Basically it will handle two kinds of messages, the outgoing ones which are

generated by internal processes, and the bypassing ones which are coming from

external sources, and just want to use that transputer, as a retransmission station.

This module is always listening to all possible channels, in such a way that

any output request will be accepted almost immediately. Once a request for output in

some specific link is accepted, that means that the requestor can go ahead with the

transmission through that link, with the guarantee that no collisions will happen. As

you can see it acts much like an air controller in an airport with four parallel runways.

where besides ensuring mutual exclusion to each of the runways, he will keep them

working in parallel.

3. Screen Handler

The Screen Handler will make sure that just one process from "any transputer"

is holding control of the screen port at one time. Much like the output handler, once a

request is accepted. the requestor is guaranteed iree usage of the resource with rio

interference.

It is important to mention that all the communications between modules and

submodules of our operating system, are done strictly via control flags, with no data

flow until the very end of the process. Another point is that for efliciency purposes, we

are allowing some user accessible routines like "send" and "receive", to have direct

50

contact with the hardware links, but this will not cause any problems, because their

execution is completely controlled by the operating system modules.

V.-

7

51

0

-. p . .. -. ~ --..--.. - . . . -

IV. OPERATING SYSTEM IMPLEMENTATION

We will discuss in this Chapter all the steps and peculiarities of our

implementation," as shown by the source code contained in the Appendix D.

A. INPUT HANDLER

The general structure of this module is presented in Figure 4.1, where we can see
that it is all the time listening to the four input links in parallel, and as soon as we

have any incoming message, it will be readily consumed by the proper link.

PROC input.handler =
... variable and constant declarations
SEQSE. initializing the buffers

PAR
WHILE TRUE

listen to linkO
WHILE TRUE

... listen to linkl
WHILE TRUE

listen to link2
WHILE TRUE

... listen to link3

Figure 4.1 A General View of the Input Handler.

Hereafter, we recommend you to follow closely the source code contained in the

Figure 4.2 for a better understanding of the program. After receiving the header with

the BYTE.SLICE.INPUT built-in procedure, we start decoding the block size. You

should ask why to decode the block size right away, even before knowing if that

message is going or not to be bypassed, but as you will notice later, even for bypassing

the block size will be required.

Once we have stored the message in the buffer of the respective link, which is

maintained by the Operating System, we can proceed with the decoding. The buffer
size is a very important issue, and it should be adjusted to the lengthiest message

l"At this point is highly recommended that the user have already been exposed to
the OCCAMI programming language and to the Transputer Development System for
the VAX, VMS.

52

% ? ," ;'' : ,-" "-: "", ,' . . :- :-:-: ' -' - - .- ..- , -. . . -: -.- , :> ,. . - . : ',:' :- ": -. -':. : : -,". ::L:. :.-

expected to travel in the network. This adjustment is carried out by changing the value

of the constant "max.block.size", located in the very top fold named "Operating System

Global Declarations" (see Appendix D). The reason for that is because the compiler

needs to allocate memory in advance for those buffers, and remember that we have one

buffer per input channel.

Since we have to spend an appreciable time initializing the buffers, 12 and also

because we have very strong memory limitations in the B001 board (64K), it is a wise

idea to use strictly the necessary buffer size. As we will see in Chapter VII, this buffer

size can be modified by changing a constant value called "max.block.size".

It' the message is not for this transputer we calculate the output link by looking

up in the routing table for that transputer. This table must be provided for each

transputer in the network during the configuration phase, it will be covered more in

detail at the end of this Chapter. But for the time being, it is sufficient to know that its

indexes are the destination transputers id numbers, and the correspondent values

represent the output channels to be used in order to reach those transputers.

Therefore, the only valid values in the table are 4, 5, 6 or 7.

So far we haven't done anything fancy, but now comes the subtle point, I may

say the most important and nice concept of the whole system. As you can see, when

we send a flag to the output handler, requesting a "green sign" to go ahead with the

retransmission of the header and the message, the soft channel used to send the flag

must carry the necessary information, in order for the output handler to be able to

recognize specifically, who is requesting permission, and which output link that request

is for. The reason it must keep track of information like this is because many different

users might be requesting permission to output through the same link. Now comes the

question: how can we pass this information to the output handler without having to

send extra bytes of information, and at the same time keeping this switching of

processes as efficient as we can ? The answer we came up with was to use an array of

channels whose indexes obeyed a special law of formation.

If 'ou take a close look at the code, you will see that the channel indexes will

carry all the needed information, in other words, who is requesting and what is being

requested. So that. channels 04, 05, 06 and 07 will be used by any message received

through link 0 tihat wants to be retransmitted by links 4, 5, 6 or 7 respectively.

'Although this is not a required step, it is believed that in not doing it, we may
have some strange results, due to some problems i the code generation of the
OCCAM I compiler for the VAX.

53

VS

WHILE TRUE
-- listen to linki

SEQ receiving the header

BYTE.SLICE.INPUT (linkl,headerl,1,header.size)
-- decoding the block size
block.sizelLO] z((256 * headeri (BYTE 1]) + headeri [BYTE 2])

-buffering the message
BYTE.SLICEAINPUT tlinklibuffer.inl,lpblock-sizel[0])
IF

-- the message is to be bypassed
headerl-[BYTE 4] -> thistransputar

SEQ
-finding the best link to output that message

outl :=routetable Eheaderi [BYTE 4]]
-outputing to the required link

BYTE.SLICE.OUTPUT(chan[10+outl,headerl,3,l)-- start flag
-- thru chan 14,

IF -- 15,16 or 17
outl =4

SEQ
BYTE.SLICE.OUTPUT (link4,headerl,l ,header. size)
BYTE.SLICE.OUTFUT (link4,buffer.inl,l,block.sizel[0])

outl = 5
SEQ

BYTE.SLICE.0UTPUT (linkS,headerl,l,header.size)
BYTE.SLICE.OUTPUT (link5S,bufferdinl,1,block.sizell0])

outl =6
SEQ
BYTE.SLICE.OUTFUT (link6,headerl,l,header.size)
BYTE.SLICE.OUTPUT (link6,buffer.inl,l,blocksizel(O])

outl = 7
SEQ

BYTE.SLICE.0UTPUT (linkl headerl,l,header.size)
BYTE.SLICE.OUTPUT (linkl,buffer.inl,l,block.sizel[0]J

BYTE.SLICE.0UTPUT(chan~l0+outl,headsarl,3,l) -- end flag

-the met sage is for this transputer
headerl [BYTE 4] thistransputer

SEQ
IF
headerl [BYTE 3] <> scm -- if channel.id <> 403

SEQ
-- passing the size of the message (blooksizeltO])
NORO.SLICE.OUTPUT (chantheaderl [BYTE 3]] ,blocitsizel,0,l)
-- passing the message itself
BYTE.SLICE.OUTFUT (chan[headerl [BYTE 3]],buffer.inl,l,

block.sizel[0])
TRUE -- if channelid =40 = Screen

SEQ
-- I'm ready
BYTE.SLICE.OUTFUT (screen[l],headerl,3,l)

-output to the screen
send.string (Screen, buffer.inl, 1, block.sizel[O])
new linedl)
-- I'm done
BYTE.SLICE.OUTPUT (screentl],headerl,3,l)

Figure 4.2 Input Handler Source Code (Partial).

54

. . - --- .-

Likewise, channels 14, 15, 16 and 17 will be related to link 1, channels 24, 25, 26 and

27 to link 2, and finally channels 34, 35, 36 and 37 to link 3. Therefore, these will be

operating system reserved channels and must not be used as user channels. Remember,

there will be no checking for this error, so that if you use these channels inside your

program it will very likely deadlock the system.

When the retransmission of the message is finished, the requestor sends another "'"

flag to the output handler, to let it know that the output link may be freed or used by

the next in the queue.

On the other hand, if the message is for this transputer, then a further check will

be made to see if the message is to be sent to the screen or to some internal user

process. This check is needed because in our implementation a message sent to the

screen does not require a receiving process in the root transputer, whereas in the other

case it is mandatory. Obviously this step will be carried out just in the root transputer.

and this will be the basic difference between the operating system for the root and for

the other transputers, since the root transputer is the only one to have a port attached

to a terminal.

When the message is for some user process, the block size information is still

needed, since the user process must know what is the length of the message it is about

to receive, otherwise it will have no way to know when to stop receiving. This

additional overhead arises from the fact that we are allowing variable length messages.

The screen channel is defined as channel "scrn" or "40", and it is another

operating system reserved channel. Once we receive any message addressed to it, we

will need to request permission to the screen handler, as we have done previously with

the output handler, to go ahead and send it to the terminal.

B. OUTPUT HANDLER

Although the Output Handler looks very simple, it performs a very complicated

task which is to assure mutual exclusion for each one of the output links.

As can be seen in Figure 4.3, all the channels with termination 4 will be polled

through the first OCCAM alternate construct (ALT) to check if there is anyone

requesting access to link 4. Similar action is being held for each of the others output

links, with all of this being done in parallel. If there is any request for output through

the hardware links, it will accept the request and will lock up that link until the user

tells him that he is done. The main issue here is that the termination of the soft

channel id, determines which link that channel wants to use as output.

55

Lee

,%

PROC output.handler =
-- local variable declarations
VAR flag4 [BYTE 23
VAR flag5 [BYTE 2
VAR flag6 [BYTE 2 :
VAR flag7 [BYTE 2:

PAR
WHILE TRUE

ALT i = [0 FOR max.io.channels]
chan [(10*i) +4] ? flag4 [BYTE 0] for link4

BYTE.SLICE.INPUT (chan [(10*i) +4],flag4,0,1)
WHILE TRUE

ALT j = [0 FOR max.io.channels]
chan [(10*k) +5] ? flag5 BYTE 0] for link5

SWHILE TRUE
ALT k = [0 FOR max.io.channels]

chan [(10*k) +6] ? flag6 [BYTE 0] for link6BYTE.SLICE.INPUT (chan [(10*k) +6],fl;g6,0,!)
w.', HILE TRUE
-"ALT 1 = [0 FOR max.io.channels]
""chan [(I0*i) +7] ? flag7 [BYTE 0] - for link7

BYTE.SLICE.INPUT (chan [(10*1) +7],flag7,0,1):

Figure 4.3 The Output Handler.

Although it is not clear at a first glance, due to the way that the replicator ALT

is implemented in OCCAMI, we are having a sequential, rather than parallel, output

through the links 4, 5, 6 and 7. Let's suppose we have somewhere in time the following

channels requesting output in parallel: chan[17], chan[4], chan[35], chan[54], chan[76],

chan[S-], chan[107] and chan[66] (see Figure 4.4). We should be able to realize by now

that the first three channels are reserved channels and carry some messages which must

be bypassed through links 7, 4 and 5 respectively. On the other hand, the remaining
. five channels are being used by some internal user processes running in that transputer,

which want to use, respectively, links 4, 6, 4, 7 and 6 for output. What we should

expect by looking at our implementation of the output handler (see Figure 4.3), would

be to have the following sequence of transmissions, 13 as depicted in the Figure 4.4, but

what actually happened was a sequential transmission in the following order: chan[17],

chan[4], chan[54], chan[841, chan[351, chan[66], chan[76] and finally chan[107] (see

Figure 4.5).

13We have assumed the same length for all the messages just for convenience.

56

r

S.

I i i

S C Cto link 4

to link 5
ClAN 8S

to link 8
CRA _7 ClAN 66

1 to link 7
CRAN 107 ClAN 17

time 0

Figure 4.4 The Expected Behaviour.

A 4to link 4
* I CRAM 34 ClAN4 ClAN

I to link a

*to link 6

C Cto I nk

time 0

Figure 4.5 The Actual Behaviour.

Based on the previous results, we couldn't come up with a reasonable

explanation, other than some problem in the code generation of the OCCAM I

compiler for the VAX/VMS.

57

*',-.-..... -........ ... - -. .#. ''.

-IiwV-J J
After many different trials we have Finally got a way to implement it truly in

parallel, and it came up with the odd structure presented in Figure 4.6.

WHILE TRUE
SEQ

goingi TRUE
going2 TRUE
going3 TRUE
Foing4 TRUE

WHILE goingi
ALT

ALT j=[0 FOR max.actual.channels]
chan [(10*j)+4] ? flagl

SKIP
goingi : FALSE

WHILE going2
ALT

ALT k =0 FOR max.actual.channels]
chan rR(1*k)+s51 ? fla 2
SKPBYT2.SLICE.QUTPUT ciian((1O*k)+5],f1ag2,1,1)

going2 :=FALSE

WHILE going3
ALT

ALT 1 = [0 FOR max.actual.channels]

SKIP Y.SIEO)PTca(1*)],ac311
going3 :=FALSE

WHILE going4
ALT

ALT mn = [0 FOR iax.actual.channels]
chan [1O*m)+7] ? flaq4
BYTE.SLICE.OUTPUT(chan((1O*m)+7,flag4,.,1)

SKIP
going4 :=FALSE

Figure 4.6 The Parallel Solution.

However, this was the only way we round to trick the compiler. With this structure we

had the expected parallel output, in other words, each 'ink :ransrnitting in parallel.

exactly like depicted in Figure 4.4.

If the reader looks at the final implementation of the Output H-andler. he will
notice that we have used the first structure, rather than the second one. There are some

reasons for that, the first one is because we have assumed that it will be very unlikely.

to have such a situation where all the channels will be ready exactly at the same time

58

and furthermore, we are talking about more than one message ready for each of the

links at the same time, what you should agree that will be quite unusual, but

nevertheless, the most important reason was that after evaluating both structures, we

have ended up with a very big difference in execution time towards the first one, being

more specific, it was in average about 5.6 times faster than the second one ! Actually,

this could be partially expected just by looking at the overhead imposed by the second

structure.

Now you can realize why we have chosen an array of channels, instead of using

generic names for those channels which communicate with external transputers. Stop

and think how difficult and cumbersome it would be, to make an alternate construct

with generic names for their guards. 14

C. SCREEN HANDLER

The idea behind this procedure is exactly the same as the output handler. The

main difference is that it will take care just of one channel, the Screen.

If any other transputer wants to output to the screen, the only thing it must do is

to use the standard "send" routine, which will be covered later in the Section dealing

with the Library Routines, and send any message he wants through the Operating

System reserved channel 40, also defined as "scrn".

Once this has been done, the message will arrive at the input handler of the root

transputer, and after being decoded it will end up in requesting permission to the

screen handler to output the message to the screen. If you look carefully in the input

handler code, the software channels screen[0], screen[l], screen[2] and screen[3] are

directly related to messages coming from external sources. If some process in the root

transputer wants to output something to the screen, it will use additional sof'tware

channels allocated for it in advance. In the actual implementation we have reserved just

two more screen channels for the root transputer, screen[4] and screen[5], but this is a

matter of just changing the constant "max.screen.channels", which is located in the

"Operating System Global Declarations" fold, and you will be able to have as many as

you need for your application.

This feature actually improves the capability of the programmer, since he had

prior to this implementation just one possible channel for writing to the screen, and

now we can have as many as we want. Obviously, due to physical limitations (we have

14'Guard is the name given for the channels which are being polled for input by
the alternate construct.

59

0,-

just one port to the monitor), we will have a sequential output, but in doing so we are

taking from the user the need to worry about this matter, in other words, we are

providing to the user a higher level of abstraction.

However, the beauty of all this about the screen, is that we have now theI, possibility of debugging remote transputers, what we didnt't have before. Now we can

even trace the execution of all our processes running in the entire network, by just

sending a flag to the screen when entering in some procedure and when exiting it. Of

course it won't be in real time, but at least we will be able to have a precise idea of the
entire flow of control in the network.

If we have the case where four transputers may try to output to the screen at the

same time, we won't know which is which, so that we must send a unique message

which characterizes the transputer it is coming from. This little problem could be very

easily solved by inserting the origin transputer id in the message header, but for

efficiency purposes we decided not to implement it.

Finally, you might have already noticed that the output to the screen from

remote transputers, is the only send operation which does not require any other receive

operation in the root transputer. This is a basic point, since for every send operation

ought to have a receive operation for the same channel id somewhere in the network,

otherwise the system will deadlock.

D. THE ROUTING TABLE

The routing table is the instrument that will provide to the operating system, the

necessary information regarding the routing of messages. For example, if we receive a

message which needs to be bypassed, the O.S. based on the destination transputer id

for that message, will look up in the table and see which is the recommended link to

output that message. Once this has been determined, it will follow the standard steps to

input or output a message, as already discussed in previous Sections. Similar action

will be taken for internal messages, which want to be forwarded.

In the first implementation of our system, we put the routing table, as well as the

transputer id number, as global variables inside each of the SC PROCs to be

downloaded to the network. Although this way is much simpler to implement, it

presents a very serious limitation, and that happens when we want to load basically the

same SC PROC in several transputers, just differing by its id number and by its routing

table. If that was the case we would have to make as many as needed different SCs,

which is completely wasteful. So, we decided to pass the transputer id number and the

60

routing table as constant parameters in the configuration, but since OCCAM I does not

support tables as parameters in the configuration, 5 the only solution was to pass value

by value, and if we follow the code we will see a fold in the top of the main program of

the operating system, where the entire routing table is received.

Another point to mention is that our routing table was limited to 18 entries

because we have just 18 transputers in our Lab. But if for some reason we need to

change it, we must carry out the following steps:

I. Change the route.table declaration, which is located in the "Operating System
Global Declarations" fold. in each of the files ROOTOS.TDS .inu
REMOTE OS.TDS

2. Add as many new parameters as needed to each of the SC PROCs to be
downloaded in the different transputers; .

3. Go to the main body of the PROC "operating.system", where the routing table
is actually received, and assign the new parameters from the previous step, -o
some new indexes of the routing table. Try to be consistent with the
assignments which are already in there;

4. In the configuration Section, add the new values to the parameter list of each of
the SC PROCs, much like you did in step 2;

After building the routing table, the user must check it for the non existence of

cycles in it. If that happens, it will be very likely that some of the messages wil never

arrive in their final destination, constituting a very difficult problem to isolate. Hence,

it is strongly recommended to perform this test, before using a new routing table.

As the reader can notice, our routing table is nothing else than a graph, so that if

the table is very large, it is recommended to make a little program to detect cycles in it.

There are many algorithms to detect cycles in a graph. which might be found in any

book covering Graphs. However, if the table is small. it is quite simpler to check it by

hand.

Suppose we are given a transputer network and a routing table, as specified in

Figure 4.7. The routing table specify the output links, which must be used by the origin

transputers, when they desire to send some message to the destination transputers.

We suggest the following aigorithm:

1. Select a column, in other words, a destination transputer;

2. Select an origin transputer, one at a time, and use the output link listed in the
table, to find by looking at the network, where the message will be directed to.

151t is believed that the new beta release version of OCCAM2 for the VAX, VMS

will support tables as parameters in the configuration.

61

3. If the transputer obtained from Step 2, is not the destination transputer, jump
back to Step 2 and use the latter one as the new origin transputer, otherwise,
proceed to Step 4;

4. If you have got a cycle when executing Steps 2 and 3 stop, modify the routing
table, and start all over again, otherwise, jump back to Step 1 and select
another column, until all columns have been selected.

E. OPERATING SYSTEM LIBRARY ROUTINES

What do these libraries contain ? Is it required to put them in any TDS program?

As explained in Chapter II, the answer is "no". They are not required to be inside a

file, a [old or whatever, but this was the way we found most attractive, logical and

easy, to handle the increasing number of new procedures, which were created along our

research. The basic idea is to update the library whenever someone in the research

group, has made a routine which might be useful in the future. However, it will be

useless if it is not very well documented, tested and validated for all expected inputs.

Following this line of thought we have built basically two libraries. :he first one

for the root transputer, and the second one for remote transputers. Both are completely

described within Appendices D and E, which present the source code for the root and

remote operating systems.

Although they have almost the same routines, they have quite a few differences

in their implementations, as we should expect. However, it is not our intention to

provide a deep explanation of all the code contained in those libraries, but the

interested reader is welcome to go into the source code, which we have tried to

document as well as possible.

The only routines which we will cover in detail are the "send" and "receive"

routines, which are the basic interface to the user, "nd also the most important

procedures to handle communications in the network.

1. The Send Routine

When we want to send a message to an external transputer, this is the right

procedure to call. It is one of the two only routines, which can access the modules of

the operating system directly. It is also, as we will see later, the only routine .hat can

output directly to the hardware channels, but obviously under control of the operating

system. The fact that we are allowing a user accessible routine to talk directly with the

hardware output link, may cause the unpleasant feeling that we are not following our

previous abstraction model for our system, but that is not correct, since the operating

system is still with the control over that link. Furthermore, we have tried other wavs

and this was by far the most efficient one.

62

. l"I -"I rl * S . I II 1 I I I1 - r :: - C t. I #- -

DRSTINATION

R 0123

R 0 4 a 7

04 7 4 6 7
GS

ROOT TO Ti T2 TS

oest orig

ROOT TO Ti T2 TS

ROOT TO Ti T2 T'

ROOT TO Ti T2 Ta

ROOT TO Ti T2 Ta

0 0

ROOT To Ti T2] T8
O 0

ROOT TO Ti T2 Ta
D 0

0ROOT To Ti T3 T a

00

ROOT To T8-4-T2 -

0

ROOT To T T 2 T8

• ~ ~ ~ ' * -.e-- CYCLES

0

ROOT TO Ti-*-T2 T"
0

o

Figure 4.7 Checking the Routing Table for Cycles.

63

- o • - -. -; i; ,,I llliib kl = & dll ,'l' I.kli mli m

It is inside this procedure where the header is constructed, using the

information provided by the user. Another important point to raise is that for any

"send" we must have a "receive" for that same channel id, exactly at the destination

transputer for that send. The only exception is in the case of the channel "40" or

"scrn", where we don't need to have a receiving process for the send.

The following parameters must be passed to this procedure:

* The channel id which is an integer value multiple of 10, in the range of 40 up to
240. Remember that channels 0 up to 37 are operating system reserved channels
and cannot be used inside our program. The only reserved channel that we can
make use of, is the "40", which is uniquely assigned to the Screen channel, but
even though, we cannot use it to send messages to transputers others than the
root;

* The destination transputer id is a unique integer value which characterizes a

table. in other words, if we have a routing table with 18 entries, the id numbers

must be between 0 and 17 including both endpoints:

• The start byte is the position of the first byte in the array that we want to send.
Obviously it cannot be negative. It is important to remember that an array in
OCCAM always start from byte 0, so that "start.byte" equal to 0 is a valid
entry. However, always keep in mind what we really want to send;

* The size is the number of bytes to be transmitted. If we want to send the
message from some specific start byte up to the end of the array, we don't have
to make any calculations, just put "0" as the size value. However, in using this
latter approach, it is mandatory that in the byte 0 of this array we have its size
information, as it is usually done in OCCAM 1.

send (VALUE chan.id,dest.transp,message[],start.byte,size)

USAGE: send (60.15,27)

send (scrn,1,5,0)

2. The Receive Routine

This procedure is the second and last routine which have direct contact with

operating system modules, specifically the Input Handler. It basically receives the

message that was sent by the correspondent "send" routine, and since we are allowing

variable message size, it returns to the user, as an output parameter, the length of the

received message. It requires the following parameters:

64

p.

Ir

* The channel id which is an integer value, multiple of 10, in the range of 50 up
to 240. Much likely the "send", we cannot use the operating system reserved
channels, and with the "receive", not even the "scrn" channel or "40" is
accepted;

* This parameter is an output parameter of the type array, and contains the
variable to hold the incoming message, which must be declared as an array of
the same type of the original message:

* The last parameter is also an output parameter and provides the user with the
length of the message just received. It is included as a parameter, because we
might have a case where the program must take an action based on :he length
of the message, but in most o the cases it can be disregarded. It must be
declared as an array of integers with size 1.

receive (VALUE channel.id, VAR message[],message.length[])

USAGE: receive '60.message.'n.wize)

3. The Root Library (ROOTLIB.TDS)

This Library is intended to be used under the Operating System in the root

transputer. It contains basically many 1, 0 routines with various formatting capabilities,

some conversion routines to change the representation of some data types, and some

utilities which will help you in getting the real time inside some process, to calculate

the transfer rate in KBitsisec of some link, to dump parts of memory for debugging

purposes, etc....

Unfortunately, the file system interface with the VAX. VMS is not supported

by the OPS Kernel in OCCAM I. and although we have put some effort in solving this

problem, we didn't have the sufficient time to get a successful result. This issue will be

discussed later in the Section covering follow-on'work, in Chapter VII.

The Appendix D will present the operating system for the root transputer, and

in there, you will be able to find the filed fold ROOT LIB.TDS. with all the routines in
it.

-4. The Remote Library (REMOTE LIB.TDS)

The basic difference between both libraries is that in the first one, we can send

anything directly to the screen, after receiving the consent of the Screen Handler,

whereas in the second, we must always use the procedure "send", by the special channel

"40" or "scrn". Another difference is that in the second library, we don't have the

65

.0

................ .7..................... . .

1.

r.

PROC rem.write.string, simply because the PROC send performs the same function,
with even some more enhancements. Finally, we don't have the PROCs rem.read.stnng

and rem.read.number, which use the channel Keyboard for input. They were not

implemented because of time constraints in our schedule, but we will give a brief

suggestion for their implementation, in the Section covering "follow-on work".
Similarly, the REMOTEOS.TDS which is presented in Appendix E, will

contain the REMOTELIB.TDS as a tiled fold.

66

7I

A. INTRODUCTION .w."

This Chapter will be devoted to one of the main issues, when dealing with

-:

programs which are supposed to run under a real time environment, and that is its.1
pFerformance evaluation".:J.

The evaluation will be basically software oriented, in the sense hat no hardware ,
measurements will be made. Strictly speaking, it will consist in running a special ."
program, where all links will be exercised in transmitting messages of different sizes,
and where the parallel operation of the links will be stressed as well."'

B. A BRIEF DESCRIPTION OF THE EVALUATION SYSTE

"'

The configuration on which we are going to evaluate our operating system,. is"'
composed of a root transputer directly connected to four others transputers, as
presented in Figure 5.1. The program used for the evaluation is a modification of the
evaluation program made by Vanni J.F. in his thesis [Refs 9, where a complete
evaluation of the Transputer and its communications links is presented. We will be

using eve the same configuration, in such a way, that our final results for the link

transfer rates, when using the Operating System, can be fully compared with his results. "Basically, what his program does is to send successively to one transputer, then

to two, three, four and forally to all transputers in parallel, messages with vat'ing sizes,
starting from g byte up to 10000 bytesVn6 After receiving these messages the remote

transputers will echo them back, also in a parallel fashion and the root transputer after
a veryn careful and precise timing process, will time the entire transfer process and
display the transfer rate in KBits/sec.

The structure of this evaluation program can be better understood, if stated as a
sequence of steps, where each complete sequence will be applied, consecutiveswt for
each message size. We will also present in Figure 5.2 a partial view of the evaluation

program, which will be running in the root transputer.

ae In our modified version of his program, wwilltie ell ene tnsted to a maximum
message sizeof 4K, due to 001 board memo" limitations, which are aggravated b
the fact that the Operating System must maintain a series of buffers in addition to the
user declared ones.

67 i'

".N

..

-7IL -?~ II - -V .1. VI Ar .V.

pipe [3]

[2]
2

[6] [7]

[091
(4] [57

p

Figure 5.1 The Configuration used in the Evaluation Process.

A flag is sent from the root transputer to transputer #0. When the flag is
accepted it will mean that the transputer #0 is ready to receive the actual
message. The end of this step will determine the start of our timing process,
which is carried out in the root transputer. The basic objective of this flag is to
achieve the most accurate synchronization betwccn processors as possible, since
it will directly influence the precision of our results:

2. The actual message is sent, and once it is received by transputer #0, we will
stop tining;

3. The transfer rate in KBits,'sec is calculated and displayed as "1OUT";

-4. .\nother flag is sent to transputer -0 for the same reasons specified in Step I.
Once it is received by the transputer #0, we will start timing in the root
transputer;

5. The transputer #40 echoes back the message to the root transputer. Once the
entire message is received the timing process is stopped;

6. The transfer rate is calculated and displayed as "IIN;

0

68

.0.

................... ~..---

7. Two flags are sent in parallel to transputers #0 and #1. Upon arrival we start
timing;

8. The message is sent to both transputers, in parallel, by 2 different links. Upon
arrival of both messages we stop timing;

9. The transfer rate is calculated and displayed as "2OUT";

10. Two more flags are sent in parallel to transputers #0 and #1. Upon arrival we
start timing;

11. The messages are echoed back by both transputers. Upon arrival of both
messages in the root transputer, we stop timing;

12. The transfer rate is calculated and displayed as "2IN";

13. Three ilags are sent in parailel to transputers ;,0, #1 and =2. Upon arrival we
start timing;

14. The message is sent to the three transputers, in parallel, by 3 different links.
Upon arrival of the messages we stop timing;

15. The transi'er rate is calculated and dispiaved as "3OUT":

16. Three more tlags are sent in parallel to transputers 40 #1 and =2. Upon arrival
we start timing;

17. The messages are echoed back by the transputers. Upon arrival of all messages
in the root transputer, we stop timing;

18. The transfer rate is calculated and displayed as "3IN":

19. Four flags are sent in parallel to transputers #0, #1, #2 and #3. Upon arrival we
start timing;

20. The message is sent to the four transputers in parallel by 4 different links. Upon
arrival of the messages we stop timing;

21. The transfer rate is calculated and displayed as "4OUT";

22. Four more flags are sent in parallel to transputers 40, 41, =2 and =3. Upon
arrival we start timing;

23. The messages are echoed back by the transputers. Upon arrival of all messages
we stop timing;

24. The transfer rate is calculated and displayed as "4IN";

25. Four flags are sent in parallel to transputers 0 1. =2 and 13. Upon arrival we
start timing;

26. The message is sent to the four transputers. in parallel. by 4 different links, and
they will echo them back immediately. Upon return of the four messages at the
root transputer, we will stop timing. This step is carried out just to check the
performance when all 8 channels (2 per link), are working in parallel;

27. The transfer rate is calculated and displayed as "4INOUT":

69

N~~J~X~FUVXN'..9flj~~~jV~~tiWVV V. VWWV-VVY, g ~~w-.~~ ~~- ~ .

PROC transfer
SE~ ?E2 = [0 FOR nr.of.sizesl

gloc~siz :=sizetableti]
-- output to one channel
actual.rate :=0
SE? j = [1 FOR repetition]

send (90,0,"a "11.)
TIME ? timeo[O1
send (90,0,buffer0 ,l, bloc}k.size)
TIME ? timel[O]
transfer.rate(time0[0] timel[0] ,l,block.size rate)
actual.rate :=((actual.rate *(J-)) + rate$/j

SKIP

0

-- nout from one channel
-- outtout to two channels
-- npuit from two channelIs
-output to three channels
-input from three channels
-output to four channels
-input from four channels

-all output and input in parallel
actual rate :0

SE3 j 1 FOR repetition]

AhR
send 90,0,"a 1",1 1)
send (100,1, "a :: 1,1)
send (110,2,"a "4,1)
send (120,3,'a 11,1Tl

TIME ? tirne0{0]
PAR

send(90,0,bufferS,1 ,block.size)
send (00,1,buffrl,l,blockc.size)

send110,2, buffer2,l,block sze)send(120,3 ,buffer3, 1,block. size)
receive (50,bufferO,dummy0
receive (70 ,buffer2 , durnmy2)
receive (8 buffer3 ,dummy-")

1111E 7 timeitO]l
trans.'er.rate(tj meOlO,::-meIl,:,,block~izera

actuai.:ate jaczual.rate (- rate)/I I
SKIP

SKIP

Figure 5.2 The Transfer Program in the Root Transputer (Partial).

0

70

Although this synchronization procedure through the use of flags is very accurate
when using direct connections of links, that is not quite true when using the Operating

System, and that is because we will be sending the flags, which are our time reference,

through the same Operating System we want to evaluate. This latter uncertainty will

have the effect of slightly decrease the actual measured transfer rate. Nevertheless, this '

is still the best way we found to get a sufficiently accurate result.

Another point to mention, is that there will be a constant called "repetition",
which specifies the number of times to perform each of the above steps, in order to

calculate an average value for the transfer rates.

C. EXPERIMENTAL RESULTS

1. Evaluating Direct Communications
The tables must be interpreted according to the sequence of steps presented in

Section A of this same Chapter. For example, if we look at Tabies I and 2, we will see

that when using one channel to output a message of 2043 bytes, we obtain a transfer

rate of 3423 KBitssec with the operating system, and a rate of 3658 KBits sec without

it, so that we can say we have lost 6% in the speed for this specific message size. Of
course, this percentage tends to increase as we decrease the message size. In the most

unfavorable situation, we will be trying to output and to receive a message of one byte,

through the 8 channels, in which case we will have speed losses of the order of 96%.
However, it is important to notice that we are comparing the operating system with the

fastest available construct, which is the "BYTE.SLICE" [Ref. 9].

As the reader can notice, the rates for the "INs" are somewhat higher than for
the "OUTs", but as the message size increases, they tend to equalize. We believe that
the reason for that. is intimately related with the time spent by the synchronization

flag, to pass through the operating system. and aggravated by the fact that the root

transputer (T414-12) is a slower machine than the remote ones (T414-15). This extra

overhead is expected to present a decreasing relative contribution, as the total transfer

time goes up, which is a direct consequence of' the message size. As one can see. :his

last assumption agrees with the fact that they tend to equalize.
Our next step in the evaluation process was towards the use of high priority

for the operating system. As can be seen in Table 3, the rates for the "OUTs" have

presented a modest increase, whereas the "INs" had a very substantial increase.
However, as the reader can notice, the rates for "31N" and "41N" are not consistent.

since we have smaller messages with higher rates than bigger ones, which is not correct.

71

IS
-.-.: :.:: ::::'- - '. :- .:.,.:-:.: ,.:::;:- 5;;::'- ::-:,-::.. 7-. -- . "a.i-. ". :-". .- :..._-.

We have no explanation for such a behavior, but we suppose that it might have some

relation with the fact, that the user process, which has low priority, is accessing the

send and the receive routines, which are high priority operating system routines. This,

somehow, might be causing some sort of problem for the scheduler. However,

although it was not checked, we believe that the data integrity was maintained,

otherwise a deadlock would have occurred.

After analyzing the experimental results, seems to us that the assignment of

high priority to the operating system is the right way to go, despite of the problem

presented in the previous paragraph. However, it is suggested additional investigation,

before using the PRI PAR construct in the operating system.

As a summary, we will present in Figure 5.3, a comparison between the best

and the worst cases from Tables 1, 2 and 3.

TABLE 1

TRANSFER RATES WITHOUT THE OPERATING SYSTEM
BETWEEN ADJACENT TRANSPUTERS (KBITSISEC)

BYTES 1OUT fiN 2OUT 21N 3OUT 31N 4OUT 41N 4INOUT
1 625 616 250 250 200 198 161 161 98
2 1217 1237 500 500 400 400 325 333 196
4 1531 2130 779 1000 648 788 650 646 384
8 2183 2811 1570 1582 1311 1301 1085 1096 690
16 2758 2924 2101 2222 1948 1919 1702 1694 1255
32 3224 3246 2589 2800 2482 2544 2330 2398 1835
64 3427 3646 3116 3226 2942 3048 2817 2954 2462
128 3543 3644 3332 3497 3265 3390 3187 3320 2945
256 3605 3741 3496 3656 3444 3596 3398 3558 3231
512 3635 3778 3578 3733 3555 3697 3509 3677 3401
1024 3650 3754 3627 3741 3604 3712 3575 3702 3512
1280 3654 3748 3640 3742 3611 3713 3587 3698 3529
2048 3658 3740 3652 3738 3621 3715 3604 3703 3549
4096 3662 3735 3663 3733 3634 3720 3618 3709 3573

2. Evaluating Multiple Path Communications

So far, we have been evaluating the operating system when working with

adjacent transputers, which is not the most clever way of using it. However, when we

have transputers not directly interconnected, which need to communicate among

themselves, it becomes almost a must.

0

72

%I

lw-.w rw VV T 'VqdVWYY .P'T ' P0'? NK' Iv R- . -~- ~ ~ WWVJ u uw-

TABLE 2

TRANSFER RATES WITH THE OPERATING SYSTEM
BETWEEN ADJACENT TRANSPUTERS (KBITSiSEC)

BYTES 1OUT fIN 2OUT 21N 3OUT 31N 4OUT 41N 41NOUI "

1 21 32 9 20 6 14 5 10 4
2 43 64 19 41 13 28 10 21 9
4 85 127 38 82 27 57 21 43 18
8 166 248 75 161 54 112 42 85 37 i
16 319 464 147 308 106 217 83 167 73
32 588 820 283 565 208 406 163 317 146
64 1015 1327 526 963 394 727 313 576 286
128 1596 1938 922 1510 710 1189 577 972 507
256 2225 2521 1476 2092 1188 1739 996 1480 943
512 2777 2967 2108 2599 1795 2266 1565 2003 1503 1

1024 3175 3256 2671 2955 2408 2673 2190 2434 21661
1280 3273 3222 2831 3038 2584 2774 2381 2545 2423
2048 3423 3420 3086 3168 2919 2930 2738 2727 2%50
4096 3556 3490 3329 3267 3238 3064 3132 2385 2324

TABLE 3

TRANSFER RATES WITH THE OPERATING SYSTEM (HIGH PRI)
BETWEEN ADJACENT TRANSPUTERS (KBITS, SEC)

BYTES lOUT I1N 2OUT 21N 3OUT 31N 4OUT 41N 41NOUT
1 23 71 11 131 7 86 5 65 5
2 46 140 23 263 15 173 11 129 104 92 270 47 522 31 294 23 256 21
8 180 506 93 701 62 588 47 506 43
16 342 883 182 1415 123 1141 92 987 84
32 626 1427 346 :998 239 2086 180 :360 164
64 1070 2042 633 2520 448 3498 344 3355 212
128 1661 2601 1079 2898 798 3260 630 5063 561
256 2296 3026 1671 3137 :312 3440 1074 4394 921
512 2830 3288 2300 3273 1937 3417 1665 3631 1392
1024 3205 3438 2830 3344 2538 3355 2294 3344 2183:
1280 3294 3470 2967 3359 2705 3319 2479 3292 2371
2048 3437 3507 3200 3374 3001 3287 2825 3213 2732
4096 3561 2519 3424 3369 3307 3241 3196 3131 2874

In this subsection, we are going to evaluate the performance of the operating

system for a multiple path communication, or sometimes referred as multiple hops

communication. The tables 4, 5 and 6 present the transfer rates for 1, 2 and 3

retransrmissions, which actually corresponds to 2, 3 and 4 hops, respectively. It is

73

/

.......

K. -
..................... 0
..
.... o
............ 0
...........~~~~~~ 19 Cwbt..................

..

..

....

....

.... :

.......... _ _ _ _ _ .0..

..*. i
....

..........
(Dass~ua) ZLWI II.1NCa

. - ~ S S 2 KJ P. J~ -. ~ ~ A S A . - . ~ .

worth mentioning, that the retransmission process is not a strict key switching, where

the "link transputer" would have just to connect its input to the output links directly,

and that is it. Actually, each transputer in order to retransmit a message, should have

to receive and store the entire incoming message into its local memory, and only then,

start the retransmission process. That is basically what is going to be evaluated in this

Section.

The program will be basically the same, with a slightly modification in the

routing table. For the one retransmission case (2 hops), we have forced the transputer

0 to send its messages to the root transputer, via transputer 2. For the 3 hops case. via

transputers 2 and 1, and finally, for the .4 hops case, via transputers 2, 1 and 3.

However, it is important to mention that the transputers which are going to

be used as "links" are overloaded, since they are still sending their own messages as

well. Hence, this evaluation is going to be a sort of "worst case" evaluation. It is

believed, that if the other processors were not executing any processes other than the

operating system, these transfer rates would have presented a substantial increase.

When examining these tables, notice that the "OUTs" are about the same as in Table

2, with adjacents transputers, and that happens because the root transputer is still

sending the messages directly. Therefore, only the "IN" columns will be of interest, in

this step of the evaluation. See in Figure 5.4 a comparison between Tables 4, 5 and 6.

TABLE 4

TRANSFER RATES WITH THE OPERATING SYSTEM
IN 2 HOPS (KBITS,'SEC)

BYTES 1OUT 1IN 20UT 21N 30UT 31N 4OUT 41N 4INOU

1 21 17 9 18 6 9 5 8 3
2 43 35 19 37 13 19 10 16 7
4 85 68 38 72 27 38 21 32 14
8 166 132 75 138 53 74 42 63 29
16 319 249 147 258 106 143 83 123 59
32 588 438 283 454 207 266 164 230 l1l
4 013 707 526 725 391 465 313 410 Z34
128 1588 1018 919 1036 707 742 576 670 438
256 2216 1312 1473 1312 1185 1054 995 980 773
512 2769 1531 2103 1510 1793 1336 1564 1276 1163
1024 3158 1672 2671 1633 2406 1539 2194 1458 1357
1280 3250 1701 2826 1662 2583 1574 2383 1498 1389
2048 3399 1748 3087 1723 2907 1629 2745 1563 14501
4096 3528 1782 3327 1770 3237 1674 3136 1620 1530

75

/ - '.- .2 ..

TABLE 5

TRANSFER RATES WITH THE OPERATING SYSTEM
IN 3 HOPS (KBITS/SEC)

BYTES lOUT 1IN 2OUT 21N 3OUT 31N 4OUT 41N 4INOUI
1 21 12 9 11 6 6 5 6 3
2 43 24 19 22 13 13 10 12 7
4 85 47 38 44 27 27 21 24 14
8 166 91 75 85 53 52 42 47 29
16 318 170 147 161 106 99 83 89 57
32 588 300 283 284 207 179 164 162 il1
64 1012 484 526 464 392 301 313 277 215
128 1588 694 921 671 707 454 576 426 371
256 2216 890 1472 870 1187 610 996 583 540
512 2766 1035 2104 1020 1791 735 1565 718 681
1024 3159 1130 2672 1119 2407 821 2192 807 778
1280 3250 1150 2822 1140 2586 839 2384 825 799
2048 3399 1180 3087 1174 2905 872 2745 854 824
4096 3529 1207 3330 1203 3239 893 3133 877 851

TABLE 6
TRANSFER RATES WITH THE OPERATING SYSTEM

IN 4 HOPS (KBITS, SEC)

BYTES lOUT fIN 2OUT 21N 3OUT 31N 4OUT 41N 4INOUI
1 21 9 9 9 6 6 5 4 3
2 43 18 19 19 13 13 10 9 6
4 85 36 38 38 27 26 21 18 12
8 166 70 75 72 53 50 42 36 25
16 318 132 147 135 106 95 83 69 49
32 588 231 283 235 207 167 164 124 94
64 1011 371 526 377 392 268 313 208 172
128 1586 532 921 539 707 374 576 312 284
256 2216 678 1473 683 1186 469 995 416 392
512 2767 787 2103 790 1792 536 1564 499 483
1024 3157 855 2669 858 2405 578 2195 556 542
1280 3248 871 2823 872 2583 586 2383 567 556
2048 3396 895 3082 895 2909 601 2741 588 578
4096 3529 914 3327 914 3239 612 3134 603 591

D. EFFECT OF THE HEADER SIZE IN THE TRANSFER RATE

One of our main concerns in the design phase of the communications protocol,

was regarding the size of the header. We thought that decreasing the header size by

half, for example, we would almost double the performance, mainly when dealing with

76

" "" """ " . .-,7"." 7 ," -," ,. _'~ .,',''' ,, ,' € 1 - ,

...

..:. :..

...

... ~ ~ ~ ~ \

...
.. ~

..... .r..

.o~ .~
..... .. ' O. 0

U I

.- - - - - - - --..

small messages. However, as can be seen in Table 7 and Figure 5.5, the effect of the

header size was found to be minimum for all message sizes. In the worst case, we

cannot even notice any difference at all.

The new protocol we will be testing, will have a header which is 3 bytes 1 7 long,

and the only difference from the previous one, is that the message size information will

* take up one byte, rather than two. Therefore, we will be limited to messages up to 255

bytes.

TABLE

TRANSFER RATES WITH THE NEW HEADER
BETWEEN ADJACENT TPRANSPUTERS (KBITS SEC)

BYTES !OUT 1.N 2OUT 2IN 2OUT 31N 40UT 41N 47:NOUT

1 22 28 14 5 4
2 44 76 22 64 14 29 10 22
4 89 i51 56 129 27 59 21 45 19
3 174 293 92 251 55 116 43 38 38
16 32 40 179 469 i10 225 86 172 76
32 613 939 341 321 25 419 170 330 151
64 1051 1486 626 1329 406 748 324 590 297

1 128 1634 2092 1106 1913 732 1211 597 1051 527
255 2266 2648 1697 2456 1216 1763 1026 1518 957

E. A CONTROVERSIAL PROBLEM

In the first version of our evaluation program, we were using the remote

transputers, which are T414 (15 Mhz), to send the svnchronization .lags to "he root

transputer. which is a T-41-; 1 12.5 M iz. We had chosen this way because %ve would be

able to start timing onli after the flag had passed through the operating system,

resulting in a more accurate timing.

However, after a period of approximate!.v 10 seconds the rnrogram vas

*aeaui!ccke :n i :anuorn \tate. ma oear .n :nmd 'hat "vtdin this tr:inc..vc .ere i'tc to

perform up to 9 compiete runs oi the same program Another symptom was that

before deadlocking, we could notice a very bh increase in the trans cr rates of the

"INs".

17We have chosen the new header size to be 3 bytes long, because in doing so,
we wouldnt have to make major changes in the protocol design.

€.g 78

. •..•, , -. . , .-. r.. , ..,

.

.

..
._ _ _ ._ _ _* . ..0..

....

...

....

..--

.....

....
7'

..

...

....
........ s L 1~ '1

.... U

Figue 55 Efectof te haderSiz in he rans~r ate

U)- CO
79 W

....

.......-

The reasons for such a behavior are still unknown, but we found it would be
i useful to pass this information, since it may happen again, in some other experiment.

-s

SI

'I.

V
V

4.

p

80

p

I
S& 2<~.~-~ - - - ... - - - .

------------------ U. ka.a r. a A A -a- S a. a. -a. -S -

VI. USING THE OPERATING SYSTEM

A. INTRODUCTION

This Chapter will introduce the operating system under the user's point of view.

Our system is intended to be used in any transputer network, but when dealing with

very small networks, up to 5 transputers. where we can always -ind :i direct

communication path between them, it may be a better choice not using the 'vhoie

operating system, but just its library routines. mainly when deaiing with small messages

and when efficiencv is a critical issue. However, in all other cases we strongly suggest

Its use, so that the debugging capability of the iistributed system wil be extremely

enhanced. as .vell is -he case oi prograrnming.

B. THE REQUIRED PROGRAM STRUCTURE

The very first steps are basically zhe same for programs with or xithout the

operating system, and they are:

I. Divide the entire program into modules, which can be run in separate
processors. Ultimately, these modules will become SCs to be placed in our
configuration.

2. Specify the interfaces between modules (or SCs) and make a sketch of the
desired configuration.

Now it is time to change a littie bit the structure of the TDS program, as

presented in Chapter ii.

The new structure is the oane presented in Figure 6.1, where some comments are

required or a boetter understanding.

As one can see, what we need to do is to create a filed fold containing either the

root or the remote operating system source code, 18 in each of the SCs. and run the

user process in parallel with the operating system. As discussed in the previous

Clirtcr. 'he P'(P\R construct \hould 'be more effcient. but we sug-est -o ,ic.iop

the entire program .xith no priority assignments, leaving them for the very end.

Another peculiarity is the new parameters list which must be passed in the

configuration part. The channels parameters have been extensively discussed in

Chapter I. when we were talking about configuration, so that at this time, we will skip

"SThey are contained in the files ROOT OS.TDS and REMOTE OS.TDS
respectively.

81

[,,, -'.'" ' ". " ' -' ' " " ' " €" " .' ,"" -, . . "% . - . ".*' ..- . .- . - . - - . - - . "r , -. -. -. ._. . .'- -. . ..-. . -

SC PROC transputer.root (CHAN A, B C,D,E,F,G,H,
VALUE this.transputer,

tO,tl,t2,t3 ,t4,t5,t6,
t7 ,t8 ,t9 ,tlO ,tl , t12
t13,t14,t15,t16,t17

* F ROOTOS.TDS
.. PROC user.root

PAR
operating. system
user. root:

P SC PROC transputer.1 (CHAN A,B,C,D,E,F,G,H,
VALUE zhis crans~uter,

-7t~9,tlO,tll '12)
t13,t!4,tJ.3,t16,:J.7

* F REMOTEOS.TDS
?ROC user.1I PA~operating. system

user..:

SC PROC transouter.2 (CHANA',BC,D,E,F,G,H,

* F REMOTEOS.TDS
PROC usger.2

operating. system
user .2:

SC PROC transputer.n (CHAN A,B,C,D,E,F,G,H,
VALUE this transiouter,

tO,tl,t2,t ,t4,t5,t6,
t7,t8,t9,tlO tll t12
t13,t14,tJ5,tJ.6,t.7

* F REMOTEOS5.TDS
PROC user.n

PAR
opera ting.system
U e r . nl

.. confi.guration

F icure 6. The PormStructure %vhen iiii he Oneratin- Sx'tem.

them. The next parameter to be passed is the transputer id number of that specific

transputer. This id number will be used as an index in the routing table, to Find the

output link to some message. It must be in the range of 0 to 17, since our actual

implementation of the routing table has only 1S entries. Another suggestion is to use

the same number used in the configuration, although it is not mandatory.

82

W- e- l. r *-t

Finally, the last 18 parameters are the routing table itself, which was already

extensively discussed in a previous Section in Chapter IV. The reason we are passing
value by value, is just because OCCAMI does not support TABLE data type as a

parameter in the configuration. It is believed that this problem has been overcome in

OCCAM2.

The user "cannot" change the names of the parameters this.transputer and tO up

to t17, since they will be passed as predefined global constants to the Operating

System. These names must be the same for all SCs in the entire program.

C. PROGRAMMING WITH THE OPERATING SYSTEM
The art of programming a distributed system is usually done by lead

programmers, with a great knowledge of the architecture they are working with.

However, in our case, with the aid of the operating system, this task will be so much

simpified. that it will be possibie to an applications programmer to carry out ihis job.

However, as in any operating system, there are some peculiarities, which must be

known by the user, before he starts to use it, and in our case they are the following:
* Whenever we want to communicate with external transputers we must use the

send" or "receive" routines. We also maintain in our Library a series of I, 0
routines and some utilities, which make use of the send routine and must be
used only if we want to have some kind of output to the screen. Therefore,
when using these library routines, we must always have the root transputer as
our final destination.

* The user must have a complete knowledge, of the available library routines for
the root, and for a remote transputer as well. We have tried to keep the same
names for the procedures in both libraries, just adding a "rem" in front of the
original name, if it was to be used in a remote transputer. The only exception
was the "write.string". which was taken out from the remote libra'v, since the
"send" routine performs the same task, with even some more enhancements.

* If for some reason, none of the library routines fits our needs, we can still
remotely access the screen, by using the "send" with the special channel "40" or
scm.

* In the actual implementation, the valid channel ids are multiples of 10. starting
f'rom 50 up to 240.

* It is very important to keep in mind that for every "send" operation, must exist
a matched "receive", with the same channel id number, and in the same
destination transputer of the "send".

As one can see, there is no difficulty in programming with the operating system.

In very few words, what needs to be done, is nothing else than a standard uniprocessor

83

I:

program, and wherever we need some sort of external communication, either to the

screen, or to any other transputer, we just have to follow the previous rules. As an

example, we will provide in Appendix F, a complete listing of the evaluation program,

which was running under the Operating System. In this program we make very little

use of the various library routines available for remote transputers, but the main idea is

just to show the overall structure of a program running under the Operating System.

D. ADVANTAGES OF THE OPERATING SYSTEM

We will now provide a list, with some of the main benefits, originated from the

use of this operating system:

1) We can have as many as needed "send" or "receive" calls inside a parallei
construct. The various "send" could be even for the same transputer, in which
case, the operating system would take care of multiplexing them. through the
correct output link. The only requirement is that all the channel ids in each of
the send inside a parallel construct must be different.

2) Now we have the capability of debugging remote transputers. For example. we
can send a unique flag to the screen when entering or exiting ever. procedure
running in some remote transputer, so that we could obtain a complete trace
of our program, and even determine where the system was deadlocking, if that
was the case.

3) Thanks to the remote dump routine we can now dump the entire memory of
any transputer in the network.

4) With the remote 1,0 routines, we have got formatting capability, so that we
could have, for example, transputer 1 using the upper left part of the screen,
transputer #2 using the middle part, transputer #3 the lower right part, and so
forth.

E. CUSTOMIZING THE OPERATING SYSTEM

This Section describes which set up must be performed, prior to the use of this

operating system with some user program.

There is a fold called "Operating System Global Declarations", which is the only

place, where the user should perform any sort of change in the O.S. file. However,

there are some declarations and definitions in there, which just need to be modified for

maintenance purposes, done by qualified people.

In most cases, the only definition we will need to change is the "max.block.size",

which specifies the size, in bytes, of the lengthiest message to be accepted in that

network.

84

2. 2. .r

-W~~ .W 7'r WV w-7 j WV Irv W-7 - - ,-V,

VII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis is a first effort in developing an Operating System for a distributed
system of transputers. It was built from three basic modules, namely, Input Handler,

Output Handler and Screen Handler. which were implemented under severe efficiency

requirements.

In order to achieve this basic requirement, we had to avoid moving data inside
our system, as much as we could. A close look at the code will confirm, that most of
the processing time is spent in exchanging flags among the different modules inside the

operating system. Even the flags were checked for eilcienc., in other words, the type
of flag we are using is proved to be the fastest one in that regard. As the reader can

notice, most of the flags and 1,0 are implemented with the BYTE.SLICE construct,
which has been proved to be the fastest construct available in the transputer [Ref. 91.
Only in the alternate construct we keep the standard OCCAM 10 channels, because
the "ALT" does not accept the BYTE.SLICE as a valid guard channel.

Now, as'we may recall from Chapter V, the performance figures of the operating
system, demonstrates that it is quite efficient, mainly for messages bigger than 2048
bytes. At this size for example, we have losses ranging from 8% up to 25%, depending

on the number of channels, which are transmitting and receiving in parallel.' 9 The last
value was obtained when the 4 channels were transmitting and receiving in parallel.

As far as debugging goes, the operating system was very successful, in the sense
that it brought up a new perspective in this field, for a distributed system of
transputers. Although we realize that it is still far from being ideal, we should agree

that it provides the user with some capabilities, which were not easily achieved up to
now.

The other main goal *o be achieved by this thesis, is regarding the ease oi
programming a distributed system of transputers. Now, anyone would be able to very.
quickly, make a program to be run in a very large transputer network.

t 9This figures can be increased, mainly when dealing with smaller messages, if we
decide to use the operating system in high priority, as depicted in Chapter V (Table 3).

85

........................

Returning to the efficiency issue, which is one of the major concerns in real time,

we strongly believe that if the present trend of increasing transmission speed continues,

we will be reaching a point where no more shared memory will be needed, since the

link speeds will be sufficient high, to allow the transmission of the global shared data

to all users of it. Let us put some numbers in this previous assumption. Assuming that
the new family of transputers, the T-800's, will really support a truly 30 MBits/sec for

the link transmission speed, we will be able to achieve with our basic operating system,
after 4 retransmissions, and also considering the worst case (4INOUT), rates of the

order of 5 MBits,/sec, which is a fairly high rate.
Two conclusions can arise from the preliminary results. First, a real time

operating system for a network of transputers is feasible and highly recommended.
Second, the shared memory architecture seems to be no longer the preferable
architecture for sharing global data, since we are going to be able to achieve

comparable results, without the disadvantages of having shared memory, like 'or

example. the system bus constituting a single point of failure.

Therefore, the transputer appears to be an attractive architecture for

implementing real time applications, where the reliability is a fundamental issue.

B. RECOMMENDED FOLLOW-ON WORK

As stated in Chapter 1, this thesis is a first approach to a basic operating system

for a network of transputers, and it is our hope that it serves as a firm foundation for

future and more enhanced implementations.

As this thesis was being developed, many new ideas were brought up, and in this

Section we will try to give some suggestions for future enhancements in the system:

• Conversion of all programs used in this thesis to OCCAM2. It is also
important, to reevaluate this new version of the operating system.

* Implementation of some filer routines which would allow one to open, close,
read and write to VMS files. However, it is believed that OCCAM2 provides
already this capability.

* Creation of one more reserved channel in the Operating System. which could
handle inputs from the keyboard to remote transputers, with a inimum
interference in the process running in the root transputer. The suggestion is to
make up a simple protocol for entering data from the keyboard, for example,
always entering with the destination transputer id# first, followed by a carriage
return, and only then, we should enter with the actual input data. The next step
should be to change the procedure "read", which is inside the terminal driver,
and insert a check for the transputer id#. If after checking, it was found to be
for a remote transputer, we should send the incoming message directly to the

86

remote transputer, through a new reserved channel, in such a way, that the
remote transputer would be able to recognize that the message was carrying
some keyboard input data.

* Implementation of an adaptive routing to replace the present one, which is
static. This feature could be further extended, in order to generate a complete
fault tolerant system. OCCAM2 provides some built-in procedures like
"OutputorFail", InputorFail" and "Reinitialise", which might be very helpful in
solving this problem [Ref. 11].

* Construction of a more powerful set of Library Routines for the root and
remote transputers, e.g. concatenation,....

* Make the Operating System resident in the transputers, in other words, when
we turn the power on, it should be automatically loaded into ail transputers. To
accomplish this step we would need to change the loader program. which
resides in the EPROM of the BOO board.

* Construction of a more powerful debugger. However, it is not imperative, in
our understanding, to make a debugger with multiprocessor capabiiity. since we
can always map our program to run into a single transputer. In order to
implement a debugger, we would have to make it resident in the upper part of
memory, and we would also need to have some kind of deassembler, in order to
correctly place the breakpoints inside the code.

* Enhancement of the Terminal Driver by changing its ,10 handling. Presently. it
is implemented by standard OCCAM I;O channels, so, the idea is to use the
BYTE.SLICE, which is a much faster construct. However, keep in mind in mind
that the single character will have to be handled as a special case, since the
BYTE.SLICE only supports byte arrays.

8

; 87

E

-. ..". . '-" " '-'-"'"," '"'". ", - .,,"' " ". , ."- --, .-
° -

"' .",='W,',:,W.€

APPENDIX A

OPS GLOBAL DEFINITIONS (GLOBALDEF.OPS)

-- globaldef.ops
-- Constant Definitions
DEF port = 0 --- assigns the RS232 port to the terminal
DEF baud = 11: set baud.rate to 9600 bps
DEF nul = 0 --- null ascii value
DEF bell = 7 --- bell ascii value
DEF tab = 9 --- tab ascii value (every 8 col)
DEF lf = 10: linefeed ascii value
DEF cr = 13: --- carriage return ascii value
DEF esc = 27: --- escape ascii value
DEF sp = 32: --- space ascii value
-- Channel Declarations
CHAN Parameters AT 0
CHAN Screen AT 1
CHAN Keyboard AT 2
CHAN FileinO AT 3
CHAN Fileini AT 4
CHAN F.lein2 AT 5

" CHAN Filein3 AT 6
CHAN Filein4 AT 7
CHAN Filein5 AT 8
CHAN Filein6 AT 9
CHAN Filein7 AT 10
CHAN FileoutO AT 11
CHAN Fileoutl AT 12
CHAN Fileout2 AT 13
CHAN Fileout3 AT 14
CHAN Fileout4 AT 15
CHAN Fileout5 AT 16
CHAN Fileout6 AT 17
CHAN Fileout7 AT 18

-- Link Definitions
DEF link0out = 0
DEF linklout = I
DEF link2out = 2
DEF link3out = 3
DEF link0in = 4
DEF linklin = 5
DEF iink2in =5
DEE link3in = 7
-- File Handler Control Values
DEF ClosedOK = -1
DEF CloseFile = -2
DEF EndBuffer = -3
DEF EndFile = -4
DEF EndName = -5
'EF EndParameterString = -6
DEF EndRecord = -7
DEF NextRecord = -9
DEF 0penedOK = -10
DEF OpenForRead = -11
DEF OpenForWrite = -12

88

-File Handler Error Values
DEF FileNameTooLong = #80000000
DEF InputFileNotOpened = #80000001
DEF Ou tputFileNotCreated = #80000002
DEF InputRecordTooLong = #80000004
DEF ReadFailed = #80000008
DEF OutputRecordTooLong = #80000010
DEF WriteFailed = #80000020
DEF CloseFa±Jled = #80000040

89S

%p

APPENDIX B
TDS GLOBAL DEFINITIONS (GLOBALDEF.TDS)

-- globaldef.tds
-- Constant Definitions
DEF oort = 0 : --- assigns the RS232 port to the terminal
DEF Saud =11 --- set baud.rate to 9600 bps
DEF nul = 0 --- null ascii value
DEF bell = 7 : --- bell ascii value
DEF tab = 9 --- tab ascii value (every 8 col)
DEF If = 10: --- linefeed ascii value
DEF cr = 13: --- carriage return ascii value
DEF esc = 27: --- escape ascii value
DEF sp = 32: --- space ascii value
-- Channel Declarations
CHAN Screen
CHAN Keyboard

-- Link Definitions
DEF link0out = 0
DEF linklout = I
DEF link2out = 2
DEF link3out = 3
DEF linkOin = 4
DEF linklin = 5
DEF link2in = 6
DEF link3in = 7

90

S

&..A..A.

APPENDIX C
TDS LIBRARY ROUTINES WITHOUT OPERATING SYSTEM

(LIBRARY.TDS)
lp

* Title: LIBRARY.TDS * Version: 1.0 *
* Author: MAURICIO DE MENEZES CORDEIRO * Mod: 0 *
* Date: 19/FEB/1987
* Programming Langage: OCCAM I *

Compiler: IMS 6-6 0 (VAX/'NS)
-* Dr escripton: This program contains some library*

* rotines to be used in any TOS program, when not *
usrng the Oerating System. It musi be olaced in *

paralel wiTh the user process and with the global
-* definitions for TDS. *

* Mod #: Date: *
* Responsible: *
* Brief Description:

* Mod ": Date: *
* Responsible: *
* Brief Description: *

- io routines
PROC dec.to.hex (VALUE integer, VAR string[]) 1I.. ******************** ***** WW %*******

--- DESCRIPTION: It converts an integer number from its *
--- decimal representation into the equivalent hexadecimal *
--- one. It accepts any valid integer. It returns the *

hexadecimal number stored in a strin2 of 10 bytes long *
where the leading zeros are preserved. *
It returns the following format: [size]#0000FFFF *
USAGE: dec.to.hex(37182,hex.string) _.
REMARK: The BYTE[0] of the string carries its length *
which is always 9, therefore it could be deleted, but *

--- we decided to-keep it. *

PROC dec.to.hex (VALUE integer. VAR string [.) =
VAR first, order.of.digit, digit :
VAR number
DEF hex.char = "0123456789ABCDEF" :
SE irst := TRUE

S
string [BYTE 0] : 9
string [BYTE] :1 #
number := integer
order.of.4igit = 9
WHILE inumber > 0) OR (first=TRUE)

igit =number /\ #F
digit : hex.char [BYTE digit + 11
string [BYTE order.of.digit] := digit
number := number >> 4
order.of.digit := order.of.digit - 1
first := FA SE

SEQ i = [2 FOR (order.of.digit - 1)
string [BYTE i] := '0 :

-- PROC dec.to.ascii (VALUE integer, VAR string [])

91

.4'

--DESCRIPTION: It converts an integer number from its *
--- decimal representation into the equivalent ASCII one. It *

accepts any valid integer number. It returns the ASCII *number stored in a string of 12 bytes long, where the *

--number is ri fdi
fom ae ?ht justified and it has the follo g*

--- 192 42 ---> 1 11 ' '' '' 1 '' If 211 1 9 374 2 *
USAGE 1922937 -- >111 11 11 1111191121121191131l71*

--- USAGE: dec.to.ascii(-9873,ascii.string)
--- REMARK: The BYTE[0] of the string carries its length *which is always 11, therefore it could be eliminated, but*

we decided to keep it.

PROC dec.to.ascii (VALUE integer, VAR string []) =
VAR number :
VAR order.of.:git:
DEF min.int = - 2147483648

SEQ
number := integer
order.of.dioit : 11
string [BYTt 0] : 11

number = ni':.int
-- :ak:ng care of the limit case
SEQ

string BYTE I] : -
string iTE2j := '2'

string FBYTE 41 14
string BYTE 5] 17
string hBYTE 6] : 4
string BYTE 7 41
string [BYTE 3 = 3
string BYTE 9] 16
string BYTE 11 14
string [BYTE 111 1

TRUE
SE F

number = 05EQ

3 trir 7.[BYTE 1]
string BYTE 11] = '0'o rder.ofdigit := 10

numoer < 0

number : number
string [BYTE 1] :

TRUE --- number > 0stri-ng [BYTE I] :
-- -ul/n - ": e c~ "numbe r

WHKE number .nm

.rina 'YTE order.of.digit] := 'number :0) 1''
number := (number / 10)
order.of.digit := order.of.digit - 1

SEQ i = [2 FOR (order.of.digit - 1)]
string [BYTE i] '

PROC hex.to.dec $VALUE strin41h VAR inte er OK)

--- DESCRIPTION: It accepts a hexadecimal representation of *
a number and converts it into an integer number. It *

--- expects the byte[O] of the string to carry the size *
--- information of that "hex number". *

92

. -. - -.------ .-----------------

- . a 4 s.*. . . . % -% . ,. . - k :. . ,

--- USAGE: hex.to.dec ("#00003785",number~valid) *
hex.to.dec ("#1452",number,valid) *
hex.to.dec ("#19574",number,valid) *

--- ascii.to.dec (hex.string,number~valid) * r
--- REMARK: Returns a boolean value FALSE in OK if the *
--- strinl is not in the correct format. *

PROC hex.to.dec (VALUE string [], VAR integer, OK) =
SEQ

integer := 0
IF

-- empty string
string LBYTE 0 = 0
OK := FALSE

-- hex number
string [BYTE 0] <> 0
IF

-- starts with '#'
string [BYTE 1] =41
VAR Count
SEQ

CK := TRUE
-ount :=:- -
...E (Count <= string [BYTE] AND OK
"R DigitSEQ
DEF hexChars = "0123456789ABCDEF"
IF

IF Index = [I FOR hexChars [BYTE 0]]
hexChars [BYTE Index] = string [BYTE Count]

Digit := Index - I
TRUE

OK := FALSE
integer := (integer << 4) + Digit
Count := Count + 1

-- otherwise
string [BYTE 1] <> '#'

OK := FALSE
SKIP

-- PROC ascii.to.dec (VALUE string[], VAR integer, OK)

--- DESCRIPTION: It accepts an ascii decimal *
--- re resentation of a humber and converts it into an
--- in eger number. It expects the byte[0 1 of the string *

to carry the size information of that "ascii number .
--- USAGE: ascii.to.dec ("-3785",number,valid) *
--- ascii.to.dec ("+1452",number,valid) *

ascii.to.dec ("19574",number,valid) *
ascii.to.dec (stringnumbervalid) *

--- REMARK: Returns a boolean value FALSE in OK if the *
--- string is not in the correct format. *

PROC ascii.to.dec (VALUE string [], VAR integer, OK) =
SEQ

integer := 0
IF

-- empty string
string [BYTE 01 = 0
OK := FALSE

-- number
string (BYTE 0] <> 0
VAR Sign r
VAR Start

93

V.

i

VAR Length
SEQ

OK := TRUE
IF

-- negative
string [BYTE 1] =
SEcm - 1

Start 2
Length string (BYTE 0] - 1

-- positive
string [BYTE 1] <>
SEign= 1

Start : 1
Length := string [BYTE 0]

-- convert to integer
SEQ Index = [Start FOR Length]
VAR Digit
SEQ
Digit := string [BYTE Index]IF

(10' <= Dicit) AND (Digit <= 19')
integer (integer " 10) + (Digit - '0')

TRUE
OK := FALSE

integer := integer * SignSKIP

-- PROC write.string (VALUE t

DESCRIPTION: Writes a given string to the screen, in a *
byte by byte fashion. It requires that the string which *
is a byte array, provides the size of the string in its *
byte [0, otherwise we will get unpredictable results. We *
are limited to strings up to 255 characters. For bigger *
byte arrays or for partial printing use "send.string . *
USAGE: write.string ("Hello,)
REMARK: It does not provide an automatic crlf. *

PROC write.string (VALUE string[]) =

EO i = [I FOR strinc[BYTE 0]]

-creen string[BYTE i]
SKIP:

-- PROC write.string.fast (VALUE strin

--- DESCRIPTION: This orocedure works just in TDS and speeds *
--- up things since the whole block is scheduled by CPU just *

-- nce , unlikely in the PROC write.string where each byte *
is individualiy scheduled. However the terminal driver
routine MUST BE chanced prior to the use of this routine.-

-- USAGE: write.strinq.fast (string) *

PROC write.string.fast (VALUE string[])=
SEQ

BYTE.SLICE.OUTPUT (Screen,string,l,string[JYTE 0]):

-PROC write.number (VALUE itgr

--- DESCRIPTION: This PROC outputs a signed integer value to *

94

Z. 121

--- the screen. It left justifies the number, so that if you *
--- need it right justified, use the dec.to.ascii and then
--- the write.string routines.
--- It uses the following format: *-- 0 --- > 0 1
.... -234193 --- > -234193 40
--- 1496 ---> 149 *
--- USAGE: write.number (integer) *

write.number(135) *

PROC write.number(VALUE integer) =
DEF min.int = - 2147483648
DEF max.digits = 11 :
VAR number
VAR order.of.digit
VAR digit [BYTE 12]
SEQ

number := integer
order.of.digit := 11
IF

number = 0
Screen ! '0'

number = min.int
Screen! '-';'2';'I';'4';' ;'4''8';'3';'6';4';S'

TRUE
SE TF

number < 0
SEQ
number : - number
Scree, !

TRUE --- number > 0
SKIP

WHILE number > 0
SEigit [BYTE order.of.digit] := (number \ 10) + '0'

number := number / 10)
order.of.digit := order.of.digit - 1

SEc i = [(order.of.diqit + 1) FOR (max.digits-order.of.digit)l
creen !digit [BYTE i]

SKIP:

-- PROC read.string (VAR string[])

--- DESCRIPTION: Reads any input sequence of characters typed*
.rom the keyboard and stores them in a string, while

echoing them to the screen. "he ?ROC is exited when a
"cr" is typed.
USAGE: read.string into.string)
REMARKi: The byte[O] carries the size information of the

--- string.
--- REMARK2: Although it accepts strings of -ny lenath, h
--- size contained in bvte[0]^wiJl be reliable only for
--- 3tr-nqs up :o 255 by'tes.
--- REMARK3: To enter with strings bigger than 3C bytes-
--- the If key in the keyboard.
--- REMARK4: The set up of your cr key in your ',a¢ ybc: ,..
--- determine where the cursor will be at trhe endic:
--- routine.

PROC read.string (VAR string[]) =
VAR n, char
SEQ

char := 1z'
n := 0
WHILE char <> cr

ADft-RISE 5.93 DESIGN IMPLEMENTAT ION AMD EVALUAT ION OF AN OPERATING 21:2
SYSTEM FOR A NETNORK OF TRANSPUTERS(U) NAVAL
POSTGRADUATE SCHOOL MONTEREY CA M D CORDE IRO

UWNLSIID FG 5/ L

:~ ~~~L4 1:0 U 2 .d

U 2

11L-25IL

MICROCOPY RESOLUTION .TEST 'CHARTA
NLARI 1%h A

5.0

lob'
% % % %

SEeyboard ? char

Screen ! char
n:= n + 1
string[BYTE n] . char

Screen 1 If
string[BYTE 0] := n

-PROC read.number (VAR number)

DESCRIPTION This procedure reads a number as entered from*
--- the keyboard. It accepts the following entries format: *

4536122 <cr> *
+3782 <cr> *

--- 573485 <cr> *
--- USAGE: read.number (into.integer) *

REMARK1: Only valid inputs will be echoed to the screen, *
so if you enter with -34r5&6, the following will *
appear in the screen: -3456 meaning that the number *
-3456 was accepted. *
REMARK2: This procedure does not check to see if the *
number is bigger than MAXINT or smaller than MININT. If *
that happens the result will be incorrect. *
REMARK3: An automatic crlf is provided when exiting. *

PROC read.number(VAR number) =
VAR ch :
VAR negative
SEQ

ch := 1z'
number := 0
negative := FALSE
WHILE (ch <> '-') AND (ch <> '+') AND ((ch < '0') OR (ch > '91))

Keyboard ? ch
IF
ch=SEQnegative := TRUE

Screen ! ch
ch = 1+1

Screen ! ch
TRUE

SKIP
WHILE ch <> cr
SELILE (ch <> cr) AND ((ch < '0') OR (ch > '9'))

Keyboard ? ch
number :(number *0)+ (ch 0)
Screen ! ch

SKIP Keyboard
? ch

Screen ! if
IF
negative

number : - number
TRUE

SKIP:

-- PROC clear.screen
DESCRIPTION: It clears the screen and homes the cursor. *

--- USAGE: clear.screen *

PROC clear.screen =
SE3creen I esc; '['; '2'; 'J' --- clear screen sequence

96

V[

%i -06

WW vu- w

Screen I esc; '['; 'HI: --- home cursor

-POC*Ros.cursor (VALUE line, column)

--- DESCRIPTION: Positions the cursor in a specified line and*
--- column. We have used the ANSI escape sequence *-
--- ESC [Line;Column H.
--- USAGE: pos.cursor (8,30) *
--- REMARKI: Valid values for line are 0 up to 24 *
--- Valid values for column are 0 up to 80 *
--- REMARK2: Values out of the above range will cause *
--- unpredictable results. *

PROC pos.cursor (VALUE line column) =
VAR x [BYTE 2], y [BYTE 21:
SET F

(line < 10) AND (line >= 0)
SEQ
y [BYTE 0] : '0'
i BYTE 1 line + #30

ine >= 10) AND (line <= 24)
SEQ
y BYTE 0] := (line/10) + 430

[BYTE 1 line 10) + #30
TRUE

SKIP
IF

(column < 10) AND (column >= 0)
SEQ

s [BYTE 0] :'0'
x BYTE 1 :=column + #30

(column >= 10) AND (column <= 80)
SEQ

x [BYTE 0] := (column/10) + #30
x BYTE (column\10 + #30

TRUE
SKIP

Screen ! esc; [';y BYTE 0] ; y BYTE 11 ;' ;

x [BYTE 0 ; x [BYTE 11 'H

-- PROC new.line (VALUE number)

--- DESCRIPTION: It will skip as many lines as specified in *
--- its parameters list. *

USAGE: new.line(4) *
RE1MARK: Negative numbers will not ive any new lines. *

PROC new.line (VALUE number) =
SE3E? i = [0 FOR number]

5creen ! cr;lf
SKIP:

-- PROC spaceVALUE number) * *

--- DESCRIPTION This procedure provides spaces for formatting*
a single line. *

USAGE: space(8) *
REMARK: This routine does not provide an automatic If *
after reachini the end of the line. *

PROC space (VALUE number) =
SEQ

97

,. , , .. ,.,,,..... .:. :. ,.,. ,,,

SEQ i = [0 FOR number]
Screen I sp

SKIP:

PROC tab QVALUE number)

--- DESCRIPTION This procedure provides tabs for formatting a*
single line. Each tab is equivalent to 8 spaces if the *
terminal is using the default set up. *
USAGE: tab(6)
REMARK: This routine does not rovide an automatic lf *
after reaching the end of the vine. *

PROC tab (VALUE number) =
E' n i = (0 FOR number]

creen tab
SKIP:

-- PROC send.strin (CHAN output VALUE strinilstart strin .length)

--- DESCRIPTION: This routine sends a string through a *
generic channel output. It also allows to specify a start *

ye, as well as the length of the string to send. *
UAGE: send.string (out.channel,"hello", ,3)
REMARK1: The above example will actually send the *

--- characters 1,1 and o. *
REMARK2: It can be used with the channel Screen as well. *

PROC send.string (CHAN output, VALUE string[],start,string.length)
SE

SEQ index = [start FOR string.length]
output ! string (BYTE index]

SKIP:

-- PROC receive.string (CHAN input, VAR string[],
VALUE start strinj.len~thj

--- DESCRIPTION: This routine receives a string through a *
generic channel input. It also allows to specify the *
starting byte, as well as the number of bytes to receive *
from the incoming string. *
USAGE: receive.string (out.channel string.in,3,2) *
REMARK1: The above example will actually receive 2 bytes *
from the incomingstring starting at byte 2. *

*****w** A, ***k****

PROC receive.string (CHAN input, VAR string[],
VALUE start,string.length) =
SEEQ index = [start FOR string .length]

:nput ? string [BYTE index?,
SKIP:

PROC send VALUE channel.id dest.transDRmessale[],start.bxtesize)

--- DESCRIPTION: It is an operating system routine, and it *
is used to communicate between processors. It builds the *
header of the message to be sent. It has as parameters *
the channel id of the channel which is going to carry on *
the communications, the id of the destination transputer *
for that message, the start byte and the size of the *
message to be transmitted. For every send must exist a *
receive for that same channel id in the destination *

98

, . . * ¢ -'.u,_ -,. -.- '....- --_-.- -.. .-.'.,-,. .'-'- '. '-.- . ,-.-,..- -. .,. - -.,'.- " ., ".'.."-'

--- transputer.
--- USAGE: send (70,4,message,, *REMARK: The user must be familiarized with the Operating *

--- System Structure before using this routine. *

PROC send (VALUE channel.id,dest.transp,message[],start.byte,size)=
VAR out,message.size,header [BYTE 5]:
SEF

size <= 0 --- send from the start.by te all way to the end.
this method is valid for messages uo to 255 bytes.

--- even for size < 0 it behaves like it was a 0.
message.size (message[BYTE 0] - start.byte) + 1

TRUE
message.size size

header [BYTE 1] := message.size/256 --- block.size (# of 256 bytes)
header [BYTE 2] message.size\256 --- (+ remainder
header IBYTE 3] : channel.id --- any tenth from 40 up to 240
header BYTE 4] dest.transp destination transputer
out := route.table (dest.transp]
BYTE.SLICE.OUTPUT (chanlchannel.id + out],header,3,1) --- ready flag
IF
out = 4
SEYTE.SLICE.OUTPUT (link4,header,l,header.size)

BYTE.SLICE.OUTPUT link4,mfssage,start.byte,message.size)
out = 5

SE YTE.SLICE.OUTPUT (linkS,header,l,header.size)

BYTE.SLICE.OUTPUT (link5,message,start.byte,message.size)
out = 6

SEO
SYTE.SLICE.OUTPUT (link6,header,lheader.size)
BYTE.SLICE.OUTPUT link6,message,start.byte,message.size)

out = 7
SE3YTE.SLICE.OUTPUT (link7,header,l,header.size)

BYTE.SLICE.OUTPUT (link7 message,start.byte,message.size)
BYTE.SLICE.OUTPUT (chanlchannel.id + out],header,3,1): --- done flag

-- PROC receive XVALUE channel.idVAR message[] nmessale.lenqth[])

--- DESCRIPTION: It is an operating system routine, and it *
is used to communicate between processors. It receives *

--- the incoming message, and provides as an output parameter *
the size of the message just received. The parameter *

--- channel id must have an exact match with the send *
operation which originated that message. *
USAGE: receive (70,message.in size)
REMARKI: The user must be famlliarized with the Operating *
System Structure before using this routine. *
REMARK2: Notice that the message. length output parameter, *
must be a unity array of integers, while the message *
itself must be declared as an arrax of bytes.

PROC receive (VALUE channel.id,VAR message[],message.length[])=
SE oRD'SLICE'INPUT chan channel.id message length e

BYTE.SLICE.INPUT chan channel.id1 lssage nt,messge

-- utilities
-- PROC tick.to.time (VALUE start stop, board.tye)
--- DESCRIPTION: It expects the board type which can be : *

99

%I

board.type = 0 ---. > OPS (VAX VMS) *
board.type = 1 --- > B001 (T414:12.5 MHz) *
board.type = 2 ---- > B002 *

--- board.type = 31 ---- > B003 (T414:15 MHz - high pri)
--- board.type = 32 ---- > B003 (T414:1 5MHz low pri)
--- board.type = 4 ---- > B004

and 2 signed integers representing some tick values *
obtained by an assignment of the type TIME ? time.var *
It then outputs the corrected elapsed time in hours, min,*
sec and msec, already taking into account the fact that *
the timer wraps around when it reaches MAXINT or MININT. *
USAGE: tickk .o.time (timel,time2,31)
REMARK: Although it takes care of the wrapping, it won't*

--keep track of the number of times you have completed one*
ful'l cycle of the timer. In order to solve this problem*
you should record roughly the start time. For example, in*
the VAX/VMS, the full cycle of the timer is 7.2 min, so

-- if You get the elapsed time of 5 min 7 sec 320 msec and *

-- you nave got a rough total time of 12 minutes, then the *

--real total time is 12 min 19 sec 320 msec.

PROC tick.to.time (VALUE start, stop, board.type)
-constant definitions

DEF vax.sec =10000000 :--- hundreds of nsec/second
DEF vax.mili 10000 **-hundreds oi nsec/milisecond
DEF bOO.sec =625000 -- # of 1.6 usec/second
DEF bOO.mili = 625 #- of 1.6 usec/milisecond
DEF bOO3h.sec = 1000000 :- # of usec/second
DEF bOO3h.mili = 1000 :--# of usec/milisecond
DEF b0031.sec = 15625 :--# of 64 usec/second
DEF b0031.mili = 16 :--# of 64 usec/milisecond

DEF max.number.of.ticks =2147483648 :--- maximum integer (2**31)
'JAR elapsed. tick:
VAR factori, factor2
VAR msec, tot.sec, sec, min, hr

SE~

board.type =0 --- VAX VMS
SE ?actorl vax.sec

factor2 vax.mili

board.type =1 --- B001

SEactorl oOO1.sec
factor2 :bOO.mili

board.type = 2 --- B002
SKIP - -- not implemented

board.type = 31 --- B003 in high priority
SEt actorl bO3h.sec

*factor2 b03h.mili

board.type =32 --- 8003 in low priority
SE

'.actorl :b0031.sec
factor2 b0031.mili

board.type =4 --- B004
SKIP -- - not implemented

elapsed.tick :stop - start
IF

elapsed.tick < 0
elased.tick := elapsed.tick + max.number.of.ticks

* 100

% % V

F~rWWNWP TFw'A~rjrrrAX kww'K W' w "W 'w VWWWWVVWFw~ %nPv~xrqnVCRM uvrnewwn U

TRUE
SKIP

tot.sec elapsed.tick/factor.
hr tiot.sec/3600
min (tot.sec\3600)/60
sec tot sec 60
msec :(elapsed tick\factorl)/factor2

-- output time to screen
write.number (hr)
write.string (" r
write.number (min)
write.string(I 11mi 11)
write .number sec)
write.string ("1 sec
write .number (msec)1)
write.string (11 msec").

~PROC dump (VALUE begi~drs count~

--DESCRIPTION: This procedure dumps the memory starting at*
the given "begin.address". The value for the*

--"begin.address" can be either in hex or decimal.*
-The count value determiaies how many words in memory will
--be retrieved.*

USAGE: a dump (*80003540,100)*
dp 1024,48)*

c ump -5113,1024)*
REMARK1: When specifying the count value remember that *

--the retrieval is done by words, not bytes!!!*
--REMARK2: If count is not a multiple of 4 it will use the*
--closest upper multiple.*
--REMARK3: Negatives or zero values for count although *
acce~ta will qive you no output.*

PROC dump (VALUE begin.address, count)=
VAR word.read:
VAR hex.value J9], hex.addr[9]:
VAR address, alig, times:

SEQ
times := 0
new line(1)
address :=begin.address
;-aligning a given addressalign :=addre ss\4
Ialign <> 0

address:= address - align
TRUE

SKIP

WHILE times <= count
SEQ
write.string ("address "
dec.to.hex (address,hex.addr)
write.string (hex. addr?
write.strinx(--C1
SEEi = [0 OR 4]

8 ETWORD (word.read,address)
dec.to hex (word read,hex.value)
write string (hex.value)
space (2
times times + 1

SKIP

101

address := address + 16
new.line(l)

SKIP:

-- PROC transfer.rate (VALUE start sto board.t;Re nr.of.bytes,VAR rate)

--- DESCRIPTION: It is basically the same routine as *
tick.to.time, with the only difference that it returns a *
rate value in Kbits/sec instead of a time value. *
USAGE: transfer.rate (timeltime2,31,4096,rate) *
REMARK: If further information is needed, please refer to*
routine tick.to.time *

PROC transfer.rate (VALUE start,stop,board.type,nr.of.bytes,VAR rate) =
-- constant definitions
DEF vax.sec =10000000 : --- hundreds of nsec/second

* DEE b001.sec = 625000 : # of 1.6 usec/second
DEF b003h.sec = 1000000 : # of usec/second
DEE b0031.sec = 15625 : # of 64 usec/second
DEE max.number.of.ticks = 2147483648 : --- maximum integer (2**31)

-- variable declarations
VAR elapsed.tick :
VAR factor --- to convert ticks to seconds

SEQ
elapsed.tick := stop - start
IF
elapsed.tick < 0

elapsed.tick := elapsed.tick + max.number.of.ticks
TRUE

SKIP
-- selection of correct factor iaw the boardIF

board.type = 0 --- VAX VMS
factor := vax.sec

board.type = 1 --- B001
factor := b001.sec

board.type = 2 --- B002
SKIP --- not implemented

board.type = 31 --- B003 in high priority
factor := b003h.sec

board.type = 32 --- B003 in low priority
factor := b0031.sec

board.type = 4 --- B004
SKIP --- not implemented

-- rate calculation
IF
board.type = 32

rate := ((nr.of.bytes*8) *factor)/(elapsed.tick*1000)
operation is none this way to keep precision ok!

TRUE
rate := ((nr.of.bytes*8)*(factor/1000))/elapsed.tick

operation is done this way in order not to exceed maxint
--- on the numerator.

multiplyby 8 due to 8 bits per byte
--- divi 000 to have the tranfer.rate in kbits/sec

SKIP:

-PROC capitalize (VAR ch[]

102

.

--DESCRIPTION: It capitalizes the first character in any *

tring.*
USAGE: capitalize (strin

PROC capitalize (VAR ch[])

DEF delta =('a' - WA) A --- >6S
a --- > 97 ASCII values
z --- >122

SETF

(ch [BYTE 11 <=z) AND (cli [BYTE 1] >= 'a-)
ch [BYTE 11 ch [BYTE 1] -delta

TRUE
SKIP

103

k- te 7, --.

APPENDIX D
THE OPERATING SYSTEM FOR THE ROOT TRANSPUTER

(ROOT_0S.TDS)

* Title: ROOTOS.TDS *version: 1.0 *
* Author: MAtIRICIO DE MENEZES CORDEIRO *Mod: 0*
* Date: 21/MAR/1987
* Programming Language: OCCAM 1*
* Comoiler: IMS D-600 (VAX/VMS)*

* * Brii Description: This program contains the source
* code for a communications operating system for the *
* root processor in a network of transputers. It must *
* be placed in*Rarallel with the user, roce ss.*

* Mod #: Date:*
* Responsible:*

* * Brief Description:*

* Mod #: Date:*
* Responsible:*
* Brief Description:*

-Operating System global declarations
DEF max.block.size = 4100:
DEF nr of.transputers = 17:
DEF header.siZe = 4:
DEF scrn = 40: -- channel screen
DEF max.io.channels = 25: -- 0 up to 240, in tenths
DEF max.screen.channels =5:
VAR route.table[18]:
VAR flag (BYTE 1]: -- for the library routines
CHAN chan [10 * max.io.channels]: --- Actually it should be:

CHAN screen [max.screen.channels]:10 ma ioc nel-)8

:-_global def.tds

-- At this aoint we should imbed the filed fold*
-- global def tds which is described in Appendix B*

-- operatinkTSystem Channel Placements
CHAN linkO Aiinkoin:
CHAN linkl AT linklin:

*CHAN link2 AT link2in:
ClIAN link3 AT linklin:
CHAN ilnk4 AT linkO'out:
CHAN link5 AT linklout:
CHAN link6 AT link2out:
CHAN link7 AT link3out:

-- root..lib.tds
l- o routines
PROC dec.to.hex IVALUE intener ,VRstring~j

-- DESCRIPTION: It converts an integer number from its
decimal representation into the equivalent hexadecimal *
one. It accepts any valid integer. It returns the*

104

f/%% d. *.- .. %.......

--- hexadecimal number stored in a string of 10 bytes long *
where the leading zeros are preserved. *
It returns the following format: [size]#0000FFFF *
USAGE: dec.to.hex(37182,hex.string) *
REMARK: The BYTE[0] of the string carries its length *
which is always 9, therefore it could be deleted, but *
we decided to keep it.

*i

PROC dec.to.hex (VALUE integer, VAR string []) =
VAR first, order.of.digit, digit
VAR number :
DEF hex.char = "0123456789ABCDEF"
SEirst := TRUE

string (BYTE 0] 9
string [BYTE 1] : #1
number := integer
order.of.digit := 9
WHILE (number > 0) OR (first=TRUE)
SEigit :number /\ #F

digit : hex.char [BYTE digit+ 11
string [BYTE order.of.digit] : digit
number := number >> 4
order.of.diit : order.of.digit - 1first := FALSE

SEQ i = [2 FOR (order.of.digit - 1)]
string [BYTE i] := '0':

-- PROC dec.to.ascii (VALUE integer. VAR string []

--- DESCRIPTION: It converts an integer number from its *
decimal representation into the equivalent ASCII one. It *
accepts any valid integer number. It returns the ASCII *
number stored in a string of 12 bytes lon?, where the *
number is right justified and it has-the ollowinq *
format: - 3542 ---> 1-11 1 11 1 11 It 113115141121 *

1922937 ---> 1 1 11 1311191121121191131171 *
USAGE: dec.to.ascii(-9873,ascii.string)
REMARK: The BYTE[0] of the string carries its lenqth
which is always 11, therefore it could be eliminated, but*
we decided to keep it. *

PROC dec.to.ascii (VALUE integer, VAR string []) =
VAR number :
VAR order.of.digit
DEF min.int = - 2147483648

SEQ
number := integer p
order.of.digit : 11
string [BYTE 0] 11
IF
number = min.int

-- taking care of the limit case
SEQ

string BYTE 2 : '2'
string BYTE 3 : '1'

string BYTE 4 : '4'
string BYTE 5 : 17t
string BYTE 6 := '4'
string BYTE 7 '8'
string BYTE 8' :131
string BYTE 9 : '6'
string BYTE 1'4'
string BYTE 11] : '8'

105

TRUE
SEF

number = 0
SEQ

string [BYTE 11 :=
string [BYTE 11]:= '0'
order.of .digit := 10

number < 0
SEQ
number - - numberstring [BYTE 1] : -

TRUE --- number > 0
string [BYTE 1] -=

-- building up the actual number
WHILE number > 0

SEQ
string [BYTE order.of.digit] := (number \ 10) + '0'
number := (number / 10)
order.of.digit := order.of.digit - 1

SEQ i = [2 FOR (order.of.digit - 1)]
string [BYTE i] := :

-PROC hex.to.dec (VALUE string , VAR integer OK

--- DESCRIPTION: It accepts a hexadecimal representation of *
--- a number and converts it into an integer number. It *
--- expects the byte[0] of the string to carry the size *

information of that "hex number". *
USAGE: hex.to.dec ("#00003785",numbercvalid) *

hex.to.dec ("#1452",number,valid) *
hex.to.dec ('#19574" ,number,valid)
ascii.to.dec (hex.string,number valid) *

REMARK: Returns a boolean value FALSE in OK if the *
--- strini is not in the correct format. *

-- ***** ** ***

PROC hex.to.dec (VALUE string [], VAR integer, OK) =
SEQ

integer := 0
IF

-- empty string
string BYTE 01 = 0

OK := FALSE

-- hex number
string [BYTE 0] <> 0
IF
-- starts with '#'
string [BYTE 1] = 1#'
VAR Count
SEQ

OK := TRUE
Count := 2
WHILE (Count <= string [BYTE 0]) AND OK
VAR Digit
SEQ
DEF hexChars = "0123456789ABCDEF"
IF

IF Index = [1 FOR hexChars [BYTE 011
hexChars BYTE Index] = string [BYTE Count]

Digit := Index - 1TRUE
OK : FALSE

integer : (integer << 4) + Digit
Count : Count + 1

106

-- otherwise
string [BYTE 1] <> 1#1
OK := FALSE

SKIP :

-- PROC ascii.to.dec (VALUE string[I VAR inteier,,OK
._***************** *********** * ****************

--- DESCRIPTION: It accepts an ascii decimal *
representation of a number and converts it into an *integer number it expects the byte[O] of the string *
to carry the size information of that "ascii number

--- USAGE: ascii.to.dec ("-3785",number,valid) *
ascii.to.dec ("+1452",number,valid) *
ascii.to.dec ("19574" ,number,valid) *

--- ascii.to.dec (string,number,valid) *
--- REMARK: Returns a boolean value FALSE in OK if the
--- string is not in the correct format.

PROC ascii.to.dec (VALUE string [3, VAR integer, OK) =
SEQ

integer := 0IF
-- empty string
string LBYTEO0 = 0
OK := FALSE

-- number
string [BYTE 0] <> 0
VAR Sign
VAR Start
VAR Length
SEQ

OK : TRUEIF

-- negative
string [BYTE 1] =

Eign := - I

Start : 2
Length := string [BYTE 0- 1

-- positive
string [BYTE 1] <>

SEQ
Sign : 1
Start : 1
Length : string [BYTE 0]

-- convert to integer
SEQ Index = (Start FOR Length]
VAR Digit
SEQ
Digit := string [BYTE Index]
IF

('0' <= Oigit) AND (Digit <= 9')
integer := (integer 10) x (Digit - '0')

TRUE
OK := FALSE

integer := integer * Sign

SKIP :

-PROC write.strinq (VALUE strin[)

--- DESCRIPTION: Writes a given string to the screen, in a *
byte by byte fashion. It requires that the string which *

107

--- is a byte array, provides the size of the string in its *
byte[0]4 otherwise we will get unpredictable results. We *
are limlted to strings up to 255 characters. For bigger *
byte arrays or for partial printing use "send.string *
USAGE: write.string ("Hello') *
REMARK: It does not rovide an automatic cr if. *

PROC write.strinq (VALUE string(]) =
SEQ
BYTE.SLICE.OUTPUT (screen[4J flag,0,1)
SE? i = [I FOR string[BYTE 0]

Screen ! string[BYTE i]
BYTE.SLICE.OUTPUT (screen[4],flag,0,1)

-- PROC write.string.fast (VALUE string[])

--- DESCRIPTION: This procedure works just in TDS and speeds *
--- up things since the whole block is scheduled by CPU just *

ohce, unlikely in the PROC write.string where each byte *
is individually scheduled. However the terminal driver *
routine MUST BE changed prior to the use of this routine.*--USAGE: wrie ;st ringfast (string) .*.

PROC rite-string.fast (VALUE string[], =

SEQ
BYTE.SLICE.OUTPUT (screen(4],flag,0,1)
BYTE.SLICE.DUTPUT (Screen stringl,string[BYTE 0])
BYTE.SLICE.0UTPUT (screen[4],flag,0,1)

-PROC write.number (VALUE itgr

--- DESCRIPTION: This PROC outputs a signed integer value to *
--- the screen. It left justifies the number, so that if you *

need it right justified, use the dec.to.ascii and then *
--- the write.string routines. *

It uses the following format: *
0 --- >0 *

--- 234193 ---> -234193 *
--- 1496 ---> 149 *
--- USAGE: write.number (integer) *
--- write.numberI135) *

?ROC -4rit..number('7ALUE integer)
DEF min .nt = - --47483H48
DEF- max.digits = 1
VAR number :
VAR order.of.digit
VAR digit [BYTE 12] :
SEQ

number := integer -.)rder.of. iiz := ii I-
3YTE.SLICE.UTPUT ,screen(4j,flag,0,1)

number = 0
Screen ! '0'

number = min.int
Screen .' '- ;'2';' ';1'4';1'7';'4'; 8 ;131; ;14

TRUE
SE

number < 0
SEQ

number : - number
Screen !

108

.~~~- s.. .

TRUE --- number > 0
SKIP

WHILE number > 0
SEgigit [BYTE order.of.digit] := (number \ 10) + '0'

number := (number / 10)
order.of.digit := order.of.digit - 1

SEQ i = [(order.of.diqit + 1) FOR (max.digits-order.of.digit)]
Screen ! digit [BYTE i]

BYTE.SLICE.OUTPUT (screen(4],flag,0,1)

-PROC read.strinq (VAR string)

DESCRIPTION: Reads any input sequence of characters typed*
from the keyboard and stores them in a string, while
echoing them to the screen. The PROC is exited when a *
"cr" is typed. *
USAGE: read.string Kinto.string) *
REMARK1: The byte[0] carries the size information of the *
string. *
REMARk2: Although it accepts strings of any length, the *

--- size contained in byte[0] will be reliable only for *
strings up to 255 bytes. *

--- REMARK3: To enter with strings bigger than 80 bytes use *
--- the lf key in the keyboard. *

REMARK4: The set up of your cr key in your keyboard will *
determine where the cursor will be at the end of the *
routine. *

PROC read.string (VAR string(]) =
VAR n, char
SEQ

char := 1z'
n := 0
BYTE.SLICE.OUTPUT (screen[4],flag,0,1)
WHILE char <> cr

SELeyboard ? char

Screen ! char
n := n + 1
string[BYTE n] := char

Screen ! lf
BYTE.SLICE.OUTPUT (screen[4],flag,0,1)
string[BYTE 0] := n :

-PROC read.number (VAR number)

DESCRIPTION This procedure reads a number as entered from*
the keyboard. It accepts the following entries format: *

--- 4536122 <cr> *
--- +3782 <cr> *

--- 573485 <cr> *
--- USAGE: read.number (into.integer)

REMARK1: Only valid inputs will be echoed to the screen, *
so if you enter with -34r5&6, the following will *
appear in the screen: -3456 meaning that t e number *
-3456 was accepted. *
REMARK2: This procedure does not check to see if the *
number is bigger than MAXINT or smaller than MININT. If *
that happens the result will be incorrect. *
REMARK3: An automatic cr lf is provided when exiting. *

vde w******* *****

PROC read.number(VAR number) =
VAR ch :
VAR negative
SEQ

109

I
P * . - '.. *\ .. ,

ch : z
nega tive :=FALSE
BYTE.SLICE OUTPUT (screen(4],fla?,0,1)

WHILE(ch > -- ') AND (ch <> '+' AND ((ch < '0') OR (ch > 19'))

ScKeboreen ch
ch= _

Screen 1c

TRUE
SKIP

WHILE ch <> cr

WHLILE (ch <> cr) AND ((ch < '0') OR (ch ' 9'))
Keyboard ? ch

number :=(number*l10) + (ch - '0')
Screen !ch

SKI Kybord? ch
Screen !Iif
IF

negative
* number :=-number

TRUE
* SKIP

BYTE.SLICE.OUTPUT (screen(4] ,flag,O,1)

-PROC clear.screen

--DESCRIPTION: It clears the screen and homes the cursor.*
--USAGE: clear.screen

PROC clear.screen
SE 3YTE .SLICE .OUTPUT (screen -- cear cree seqenc

Screen ! esc T creen(4,clarfcreeseqenc
Screen ! esc; -[' 'H' - home cursor
BYTE.SLICE.OUTPUT (screen[4],flag,O,1)

~PROC os cursor (VALUE line column)

--DESCRIPTION: Positions the cursor in a specified line and*
column. We have used the ANSI escape sequence*

--ESC (Line;Column H.*
--USAGE: pos.cursor (8,30)*
REMARKi: Valid values for line are 0 up to 24*

Valid values for column are 0 up to 80*
--REI4ARK2: Values out of the above range will cause*

unpredictable results.*

PROC pos.cursor (VALUE line column)
VAR x [BYTE 2], y (BYTE 21:
SE ?

(line < 10) AND (line >= 0)
SEQ
y [BYTE 0]: 0'
*y[BYTE 1] line + #30

(ine >= 10) AD (line <= 24)
SEQ
Y [BYTE 0] : (line/10 + #30
yLBYTE 11 (line\10) + #30

110

TRUE
SKIP

(column < 10) AND (column >= 0)
SEQ

x EBYTE 1]A column + #30
(column >= 10) AND (column <= 80)
SEQ
x [BYTE 0] 1 column/10) + #30

TREx IBYTE 1j :(column\10) + #30

SKIP
BYTE.SLICE OUTPUT (screen(4] ,flag,0,1)
Screen ! esc; I[' ; y IBYTE 01 ; y BYTE 1] ;' ;

x [BYTE 0] X [BYTE V ; 'H'
BYTE.SLICE.OUTPUT (screen[4J, slag,O 0,1)

-PROC new.line (VALUE number

DESCRIPTION: It will skip as many lines as specified in*
--its parameters list.*
--USAGE: new.line(4)*

--- REAK-eatv ubr will not gi.ve any new lines.

PROC new.line (VALUE number)
SEQ

BYTE.SLICE.OUTPUT (screen[4] ,flag,O,l)
SEQ i =[0 FOR number]

Screen ! cr;lf
BYTE.SLICE.OUTPUT (screen(j4],flag,0,1)*

~PROC sp ace (VALUE number

--DESCRIPTION This procedure provides spaces for formatting*
a single line.*

--USAGE: space(8)*
--REMARK: This routine does not provide an automatic lf *
--after reaching the end of the line.*

PROC space (VALUE number)
SEQ

BYTE.SLICE.OUTPUT (screenfj41,flag,O,1)
SEQ i = [0 FOR number]

Screen ! so
BYTE.SLICE.OUTPUT (screen[4],flag,O.1):

~PROC tab (VALUE numb--)

--DESCRIPTION This procedure provides tabs for formatting a*
sigeline. Each tab ieqvaent to 8 spaces if the

--: errninal is using the default set up.
USAGE: tabj6)*
REMARK: This routine does not orovide an automatic If *
after reachinjthe end of the line.*

PROC tab (VALUE number)
SE 3YTE.SLICE.OUTPUT (screen[4],flag,O,1)

SE~ci = (0 FOR number]
Sreen I tab

BYTE.SLICE.OUTPUT (screen[4],flag,O,1):

r. q1N,

aVWj-V -W-W1% Wa~ - .

::PROC send.string (CHAN output VALUE strin ~ sri.legh

DESCRIPTION: This routine sends a string through a *
generic channel output. It also allows to specify a start *
byte, as well as the length of the string to send. *

- USAGE: send.string (out.channel,"hello",3,3) *
--- REMARKi: The above example will actually send the *

characters 1,1 and o. *
REMARK2: It can be used with the channel Screen as well. *

PROC send.string (CHAN output, VALUE string[],start,string.length) =
SE EQ index = [start FOR string.length]

output ! string [BYTE index]
SKIP:

-- ?ROC receive.string (CHAN input, VAR string(],
VALUE start string.length)

--- DESCRIPTION: This routine receives a string through a *
generic channel input. It also allows to specify the *
starting byte, as well as the number of bytes to receive *
from the incoming string. *

--- USAGE: receive.strina "out.channelstring.in,3,2) *
--- REMARK1: The above example will actually receive 2 bytes *

from the incominj string, starting at byte 2. *

PROC receive.string (CHAN input, VAR string[],
VALUE start,string.length) =

SErEQ index = [start FOR string .length]
input ? string (BYTE index?*

SKIP:

-- PROC send(VALUE channel.id, dest.transp message[],,start.bytesize)
-*** *********** ****** 7w***r ,r 4 ****

--- DESCRIPTION: It is an operating system routine, and it *
is used to communicate between processors. It builds the *
header of the message to be sent. It has as parameters *
the channel id of the channel which is going to carry on *
the communications, the id of the destination transputer *
for that message, the start byte and the size of the *
message to be transmitted. For every send must exist a *
receive for that same :hannel id in the destination

--- transputer. *
--- USAGE: send (70,4,message,1, I

REMARK: The user must be familiarized with the Operating *
Sstem Structure before using this routine.

PROC send (VALUE channel.id,dest.transp,message[],start.byte,size)=
VAR out,message.size,header [BYTE 5]:
SEO-F

size <= 0 --- send from the start.bvte all way to the end.
this method is valid tor messages u to 255 bytes.
even for size < 0 it behaves like it was a 0.

message.size : (message[BYTE 0) - start.byte) + 1
TRUE

message.size : size

header BYTE I : message.size/256 --- block.size (# of 256 bytes)
header BYTE 2 message.size\256 --- (+ remainder
header [BYTE 3 channel.id --- any tenth from 40 up to 240

header I BYTE 4 J dest.transp --- destination transputer
out : route .table [dest.transp]

112

BYTE.SLICE.OUTPUT (chan[channel.id + out] ,header,3,1) --- ready flagIF
out = 4

SE YTE.SLICE.OUTPUT link4,headerj,header.size)

BYTE.SLICE.OUTPUT link4,message,start.byte,message.size)
out = 5SEO

SYTE.SLICE.OUTPUT (link5,header,l,header.size)
BYTE.SLICE.OUTPUT linkS,message,start.byte,message.size)

out = 6
SE YTE.SLICE.OUTPUT (link6,header,l,header.size)
BYTE.SLICE.OUTPUT link6,message,start.byte,message.size)

out = 7
SEQ

BYTE.SLICE.OUTPUT (link7,header,l,header.size)
BYTE.SLICE.OUTPUT (link7 message,start.bytemessage.size)

BYTE.SLICE.OUTPUT (chan[channel.id + out],header,3,l): --- done flag

-- PROC receive (VALUE channel.id VAR messaqei], messale lenth[])
--- DESCRIPTION: It is an operating system routine, and it *

is used to communicate oetween processors. it receives *
--- the incoming message, and provides as an output parameter *

the size of the message just received. The parameter *
--- channel id must have an exact match with the send *

operation which originated that message. *
USAGE: receive (70,message.in,size)*

--- REMARK1: The user must be familiarized with the Operating *
Sstem Structure before using this routine.
RKMARK2: Notice that the message.lenqth output parameter, *
must be a unity array of integers, while the message *
itself must be declared as an array of bytes. ********************************* *************

PROC receive (VALUE channel.id,VAR message[],message.length[])=
SE oD.SLICE.INPUT (chanrchannel.id ,message.length,On1
BYTE.SLICE.INPUT (chan[channel.idl ,message,l,messag. ength[O]):

-- utilities
-- PROC tick.to.time (VALUE start sto boardMe)

--- DESCRIPTION: It expects the board type which can be : *
board.type = 0 ---- > OPS (VAX VMS) *
board.type = 1 ---- > B001 (T414:12.5 MHz) *
board.type = 2 ---- > B002 *
board.type = 31 ---- > B003 (T414:15 MHz - high pri) *
board.type = 32 ---- > B003 T414:1 5MHz - low pri) *
board.type = 4 ---- > B004 *

and 2 signed integers representing some tick values *
obtained by an assignment of the type TIME ? time.var *
It then outputs the corrected elapsed time in hours, min,*
sec and msec, already taking into account the fact that *
the timer wraps around when it reaches MAXINT or MININT. *
USAGE: tickk.to.time (timel,time2,31) *
REMARK: Althou h it takes care of the wrapping, it won't *
keep track of £he number of times you have completed one *
full cycle of the timer. In order to solve this problem *
you should record roughly the start time. For example, in*
the VAX/VMS, the full cycle of the timer is 7.2 min, so *
if you get the elapsed time of 5 min 7 sec 320 msec and *
you have got a rough total time of 12 minutes, then the *
real total time is 12 min 19 sec 320 msec. *.__ **

113

rS

PROC tick.to.time (VALUE start, stop, board.type) =
-- constant definitions
DEF vax.sec =10000000 : --- hundreds of nsec/second
DEF vax.mili = 10000 : hundreds of nsec/milisecond
DEF bOO1.sec = 625000 : # of 1.6 usec/second
DEF b001.mili = 625 : # of 1.6 usec/milisecond
DEF b003h.sec = 1000000 : # of usec/second
DEF b003h.mili = 1000 : # of usec/milisecond
DEF b0031.sec = 15625 : # of 64 usec/second
DEF b0031.mili = 16 : # of 64 usec/milisecond

DEF max.number.of.ticks = 2147483648 --- maximum integer (2**31)VAR elapsed.tick :
VAR factorl, factor2
VAR msec, tot.sec, sec, min, hr

SEF

board.type 0 --- VAX VMS
SEactorl vax.sec

factor2 vax.mili

board.type = 1 --- B001
SE actorl bOO1.sec

factor2 bOO1.mili

board.type 2 --- B002
SKIP --- not implemented

board.type = 31 --- B003 in high priority
SE actorl := b003h.sec

factor2 b003h.mili

board.type = 32 --- B003 in low priority
SE actorl := b0031.sec

factor2 bG031.mili

board.type = 4 --- B004
SKIP --- not implemented

elapsed.tick stop - start
IF

elapsed.tick < 0
elapsed tick := elapsed.tick + max.number.of.ticksTRUE
SKIP

tot.sec elapsed.tick/factorl
hr tot.sec/3600
min (tot.sec\3600)/60
sec tot sec\ 6
msec (elapsed .tick\factorl)/factor2

-- output time to screen
write.number (hr)
write.string ("hr ")
write.number (min)
write.string (" mn ")
write.number(sec)
write.string (" sec ")
write.number(msec)
write.string (" msec")

PROC dump (VALUE beqin.address count)

114

lef4

_ . , *.', .V- .V.< , , -, , . . - - . - . - * ... , .. -. .-.. ,' j -, ;.. . . - . .-: . ,-... ,

--DESCRIPTION: This procedure dumps the memory starting at*
--the given "begin.address". The value for the*

"begin.address" can be either in hex or decimal.*
--The count value determines how many words in memory will*
be retrieved.*

--USAGE: a) dump (#80003540,100)*
b dm 1024 4%

REMARKi: When specifying the count value remember that
--- he etrev~lis oneby words, not bytes!!!

-REMARK2: If count is no~ a multiple of 4 it will use the*
closest upper multiple.*

-REMARK3: Negatives or zero values for count although *
acce~ ted ,will iv ou no outout.*

PROC dump (VALUE begin.address, count)=
VAR word.read:
VAR hex.value 19], hex.addrI9]:
VAR address, align, times:

SEQ
times := 0
new.line(i)
address : egin.address
--. a.ligning a given address
align := address\4
IF

alicgn <> 0
address := address - align

TRUE
SKIP

WHILE times <= count
SEQ
write.string "address "
dec.to.hex (adress,hex.addr)
write.string (hex.addr?
write.str n " -> '
SE i(OR 4]

SETW0RD (word.read,address)
dec.to.hex (word.read,hex.value)
write.string hex.value)
space (2)
t~mes := times +- 1

address := address + 16
new. line 1I)

SKIP:

~PROC transfer.rate (VALUE start stop board.t,4Re nr of bytes,VAR rate)

--DESCRIPTION: it is basically the same routine as*
--tick.to.time, with the only diz .erence :hat izreturns a
--rate value in Kbits/sec instead of a time value.
--USAGE: transfer.rate (timel time2,31,4096,rate)*
REMARK: If further information is needed, please refer to*
routine tick.to.time*

PROC transfer.rate (VALUE start,stop,board.type,nr.of.bytes,VAR rate)=
-constant definitions

DEF vax.sec =10000000 : -- hundreds of nsec/second
DEF b0O1.sec = 625000 : # of 1.6 usec/second
DEE bOO3h.sec = 1000000 : # of usec/second
DEF b0031.sec = 15625 : # of 64 usec/second
DEF max.number.of.ticks =21471483648 -- maximum integer (2**31)

115

%I

-- variable declarations
VAR ela psed.tick 0
VAR facor --- to convert ticks to seconds

sEQ
elapsedtick := stop - start
IF
elased.tick < 0

flapsed.tick := elapsed.tick + max.number.of.ticksTRUE
SKIP

-selection of correct factor law the board
IF
board.t-yoe =0 --- VAX VMS

factor : vax.sec

board typ = 1 --- B001
factor :=b001.sec

board.type = 2 --- B002

SKIP --- not implemented

board.type = 31 --- B003 in high priority
factor := b003h.sec

board.type = 32 --- 3003 in low priority
factor := b0031.sec

board type = 4 --- B004
SKIP --- not implemented

-- rate calculation
IF
board.t'pe = 22

rate := (nr.of.bytes*S)*factor)/(elapsed.tickwlO00)
--- operation is done this way to keep precision ok!TRUE
rate := ((nr.of.bytes*8)*(factor/1000))/elapsed.tick

operation is none this way in order not to exceed maxint
--- on the numerator.
--- multiply by 8 due to 8 bits per byte
--- divide by 1000 to have the tranfer.rate in kbits/sec

SKIP:

- PROC caoitalize (VAR chj])

--- DESCRIPT:ON: :t capitalizes the first character in any
string. *
USAGE: caDitalize strin)

PROC capitalize (VAR ch[]) =

DEF delta ='a - 'A') :

a ---: 97 ASCII values

--- z ---> 1Z2
5E9F
IF (ch [BYTE 1] <= 'z') AND (ch [BYTE 1] >= 'a')

ch [BYTE 1] :ch [BYTE 1] - delta
TRUE

SKIP

116

40 %. r- W

PROC operating.system
PROC o erating.system=

-- PROC input, handler
PROC input.handler =

-vari.able and constants declarations
VAR headerO BYT 5headeri BYTE 511

header2 BYTE 5]
header3 LBYTE 5],

buffer.inQ BYT max.block.size1,
buffer.inl BYTE max.block.sizeJ
buffer.in2 LBYTE max.block.size]
buffer.in3 BYTE max.block.size]

block.sizeO [11, outo,
block.s2.zel [1] outi,
block.size2 1ll out2,
block.size3 [I, out-:

- -_ initializing the buffers
SE? i = [0 FOR max.block.size]

Eguffer.in0 BYTE 50
bu"fier.in. BYT '1
buffe-r.in2 BYTE i]: 2'
buffer.in3 BYTE- 111 1 3'

SKIP

PAR
WHILE TRUE

-listen to linko
SEQ

-- receiving the header
BYTE.SLICE. INPUT (linkO,headerO,l,header.size)

-- decoding the block size
block.sizeO (0] := ((256 * headerO[BYTE l])+headerO[BYTE 2])

-buffering the message
BYTE.SLICE. IIPUT (linkO,buffer.inO,l,block.sizeO[0])

IF-- the message is to be bypassed
headerO [BYTE 4] <> thi.s. transputer

SEQ
P

-finding the best link to output that message
outO :=route.table [headerO [BY~TE 4]

-outputing to the required link
request flag thru chan 4, 5, 6 or 7

BYTE.SLICE.OUTPtJT(chan~out0] ,headerO,3,I)
IF

autO = 4
SEQ

BYTE.SLICE.0UTPUT (1ink4,header04Iheader.sl.ze)
BYTE.SLICE.OUTPUT (link4,buffer.in0,1,
autO =block.sizeO[O])

SEQ
BYTE.SLICE.OUTPUT link5,header0 1 ,header.size)
BYTE.SLICE.OUTPUT (link5,buffer. n0,1,

b lock.sizeo (0])
auto = 6

SEO
SYTE.SLICE.OUTPUT (link6,headero,1,header.size)
BYTE.SLICE.OUTPUT (link6 buffer.ina, 1,

'block.sizeIIO])
outO =7

117

SE YTE.SLICE.OUTPUT (link7,headerOl1 header size)
BYTE.SLICE.OUTPUT (link7,buffer.in6,1,

--release flag block.size6[6])
BYTE.SLICE.OUTPUT(chan~out0],header0,3,1)

-the message is for this transputer
headerO [BYTE 4] = this.transputer

SE ?F

headerO [BYTE 3] <> scrn
SE- passing the size of the message

(block. size0 [0]
WORD.SLICE.0UTPUT (chanrheader0 [BYTE 3]],

block. size0 ,0 ,1)

-- passing the message itself
BYTt.SLICE.OUTPUT (chan[header0 [BYTE 31],

buffer.in0, , block.sizeO[0])

TRUE -- if channel.id = 40 = scrn
SEQ- I'm ready

BYTE.SLICE .OUTPUT (screenjjO],header0,3,1)

-oututting to the screen
send.string Screen,buffer.inO,l,block.sizeO[0])

-- I'm done
BYTE.SLICE.OUTPUT (screen[0] ,header0,3,1)

WHILE TRUE
-- listen to linki
SEQ- rec eiving the header
BYTE.SLICE. IPUT (linkl,headerl,1,header.size)

-- decoding the block size
block.size (0] :=((256 * headerl[BYTE 1])+headerl[BYTE 2])

-- buffering h esg
BYTE.SLI',~. I PUT (linkl buffer.inl,l,block.sizel[0])

IF
__ the message is to be bypassed
headeri [BYTE 4] <> this.transputer

SEQ
-- finding the best link to outp ut that message
outl : route.table [headeri [BYTE 4]]

-outputing to the required link
request flag thru clan 14, 15, 16 or 17

BYTE.SLICE.OUTPUT(chan[10+outl] ,headerl,3,1)
IF

outl 4
SEQ

BYTE.SLICE.OUTPUT (link4,headerl 1,header.size)
BYTESLIE.0TPUT (link4,buffer.inl,1

outl= 5block. size [0))

SEYTE.SLICE.OUTPUT (link5,headerl (1,header.size)
BYTE.SLICE.OUTPUT (linkS buffer.inl.1

block.sizel [0)
outl = 6

SE SYTESLICEOUTPUT (link6 ,headerl (1,header.size)

BYTE.SLICE.OUTPUT (link6,buffer.inl,l,

1181

outi = 7block.sizel[0j)
S YESLICE.OUTPUT (link7,headerl 1,header.size)

BYTE.SLICE.OUTPUT (link7,buffer.inl,1,

--release flag block. sizel.[01)
BYTE.SLICE.OUTPU(chan [0+outl] ,headerl,3,1)

-the message is for this transputer
header. [BYTE 4] = this.transputer

SE T
header. [BYTE 3] <> scrn

--Qpassing the size of the message
(block, size.[0]

WORD.SLICE.OUTPUT (chanfheader. [BYTE 3]],
bloc'. size.,J,1.)

-p assing the message itself
BYT SLICE.OUTPUT (c an[headerl [BYTE 31],

buffer.inl,l ,block.sizel[0])

TRUE --- if channel.id = 40 = scrn

I' m ready
BYTE.SLICE.OUTPUT (screen[Ij,headerl,31,l)

-; outputting to the screen
send.string(Screen,buffer.inl,l,block.sizel[Q])

-- I'm done
BYTE;SLICE.OUTPUT (screen[lj,headerl,3,1)

WHILE TRUE
-listen to link2
-EQ- receiving the header
BYTE.SLICE. I PUT (link2,header2,1,header.size)

-decoding the block size
block.size2[0] :=((256 * header2[BYTE 1])+header2[BYTE 2])

-- buffering the mess age
BYTE.SLICE. I PUT (link2 buffer.in2,1,block.size2[0])

__ the messagqe is to be bypassed
header2 [BYTE 4] <> this. transputer

--Q finding the 'zest'link to output that message
out2 := route.table [header2 [B YTE 4]]

-outputing to the required link
request flac thru chan 24, Z5, 26 or 27

3YTE.3LiLCE.OUTPtOT(chan[20+out2] ,header2,3,I)
IF

out2 = 4
SE 3YTE.SLICE.OUTPUT (link4 ,header2,l,header.size)

BYTE.SLICE.OUTPUT (link4,buffer.in2,1,

out2 block.size2[0])

SE YTE.SLICE.OUTPUT link5 header2 12,header.size)
BYTE.SLICE.OUTPUT link5,buffer.in2,1,

out2 = 6 block.size2[O])
SEQ

119

BYTE.SLICE.OUTPUT (link6,header2,l,header.size)
BYTE.SLICE.OUTPUT (link6 buffer. in2, 1,

out2 ='7block.size![0])
SE ?YTE.SLICE.OUTPUT (link7 ,header2 I1,header.size)

BYTE.SLICE.OUTPUT (link7,buffer.in2,l,

--release flag block.size2[01)
BYTE.SLICE.OUTPUT(chan[20+out2] ,header2,3,l)

-the message is for this transputer
header2 [BYTE 4] = this.transputer

SE ?

header2 [BYTE 3] <> scmn
SE- passing the size of the message

(block. 3ize2 [0]
WORD.SLICE.OUTPUT (chantheader2 [BYTE 31],

block .size2,0,l)

p-assing thepmessag itself
BYTE.SLICE OUT UT (c an[header2 [BYTE 3]].

buffer.in2,1,block .size2[03)

TRUE -- if channel.id = 40 = scrn
SE- I'm ready
BYTE.SLICE .OUTPUT (screen(2],header2,3,I)

-- otputtin to the screen
send.s ring(Screen,buffer.in2,1,block.size2Io])

-- I'm done
BYTE.SLICE.OUTPUT (screen[2],header2,3,l)

WHILE TRUE
-- listen to link3
SEQ

-- receiving the header
BYTE.SLICE. INPUT (link3,header3,l,header.size)

-- decoding the block size
block.size30 [0 = ((256 * header3[BYTE 1])+header3[BYTE 21)

-- buffering the message
BYTE.SLIC...NPUT (link3,buffer.in31,1,bl~ock.size3[0])

IF
-- the messag~e is to be bypassed
header3 [BYTE 4] <> this. transputer

SEQ_
-finding the best link to output that message

out3 :=route.table [header3 [BYTE 4]]

-outputing to the required !link
request flag thru chan 314, 35, 36 or 37

BYTE.SIICE.OUTPUT(chan30-out3] ,header3,3,1)
IF
out3 = 4

SEQ
BYTE.SLICE.OUTPUT (link4,header3,1,header size)
BYTE.SLICE.OUTPUT (link4,buffer.in~ 1

out3 = lock.size~iI 6])
SEO

?YTE.SLICE.OUTPUT (link5,header3 1(1 header.size)
BYTE.SLICE.OUTPUT (link5,buffer. n 1

block.size~iI6])

120

out3 =6
SEYTE.SLICE.OUTPUT (link6, header3(l,header.size)
BYTE.SLICE.OUTPUT (link6,buffer ;n3i,1,block. size3 0

out3 =7
SEYTE.SLICE.OUTPUT (link7,header3,l,header.size)

BYTE.SLICE.OUTPUT (link7,buffer. n3,1,

--- release flaa block.size3[0])
BYTE.SLICE.OUTPUT(chani30+out31 ,header3,3,l)

-the message is for this transputer
header3 (BYTE 4] = this.transputer

SE T
header3 [BYTE 3] <> scmn

SEQ
-passing the size of the message

(block. size3 [01
WORD.SLICE.OUTPUT (chanllheader3 [BYTE 3]],

block. size3, 0.1)

p- assing the message itself
BYTt.SLICE .OUTPUT (chan[header3 [BYTE 31],

buffer. in3, , block.size3 [0])

TRUE -- if channel.id = 40 = scrn
SEQ

-- I'm ready
BYTE.SLICE .OTPUT (screen[3],header3,3,1)

-- outputting to the screen
send.string(Screen,buffer.in3,1,block.size3(0])

-- I'm done
BYTE.SLICE.OUTPUT (screen[3],header3,3,1)

-PROC output.handler
PROC output.handler =

-local variable declarations
VAR flag4 BYTE 21VAR flagS rBYTE2
VAR flag6 [BYTE 2]
VAR flag7 [BYTE 21:

PAR
WHILE TRUE

ALT i = [0 FOR max.io.channels]
chan [(10*i) +4] ? flag4 [BYTE 0] -- for link4

BYTE .SLICE.INPUT (chan 1(10*i) +4],flag4,0,1)
WHILE TRUE

ALT j = 0 FOR max.io.channels]
chan [(10*j) +5] ? flagS [BYTE 0] -- for linkS

BYTE.SLICE.INPUT (chan 1(10*j) +5],flag5,0,1)
WHILE TRUE

ALT k = [0 FOR max.io.channels]
chan [(0*k) +6] ? flag6 [BYTE 0] -- for link6

BYTE SLICE.INPUT (chan [(10*k) +6],flag6,0,1)
WHILE TRUE

ALT 1 0 C FOR max.io.channels]
chan [(10*1) +7] ? flag7 [BYTE 0] -- for link7

BYTE .SLICE. INPUT (chan 1(10*1) +73,flag7,0,l):

-PROC screen.handler
PROC screen.hand.er
VAR flag (BYTE 2]:

121

~ **~*** .*..p..'. *.-*~.*........

WHILE TRUE
ALT i = [0 FOR max.screen.channels]

screen[i] ? flag[BYTE 1]
BYTE.SLICE.INPUT (screen[i],flag,1,1):

SC PROC terminal.driver(CHAN Keyboard Screen VALUE port baud.rate)

--- This routine is provided by the manufacturer, and it *
varies with the board we are using. This particular *

--- one is for the B001 board. *

PROC terminal.driver(CHAN KeyboardScreenVALUE portbaud.rate)
PROC terminal.driver (CHAN Keyboard, Screen, VALUE port, baud.rate)

PO T4i4 Board Definitions
-- declare constants
DE bw =t 4
DEF boits.per.word = 32
DEF perif.base = #80040000 : -- base address of peripherals

-- duart register addresses

-- See table I 'Register addressing' on page 6 of
the SCN2681 data sheet.

-- These are all word offsets from address zero

DEF uartA = perif.base + 0

DEF uartB = perif.base + (8 * bpw)

DEF mode.reg = 0 * bpw -- MR

DEF status.reg = 1 * bpw : -- read SR
DEF clock.select.reg = 1 * bpw : -- write CSR

DEF command.reg = 2 * bpw : -- CR

DEF rx.reg = 3 * bpw -- read
DEF tx.reg = 3 * bpw : -- write

DEF input.port.change.reg = 4 * bpw : -- read IPCR uartA only
DEF aux.control.reg 4 * bpw : -- write ACR uartA only

DEF interrupt.status.reg = 5 * bpw : -- read ISR uartA only
DEF interrupt.mask.reg 5 * bpw : -- write IMR uartA only

DEF input.port = 5 * bpw : -- read uartB only
DEF outpuz.port.conf.reg = 5 * bpw : -- write OPCR uartB only

DEF timer.upper.reg = 6 * bpw : -- CTU uartA only
DEF timer.lower.reg 7 * bpw : -- CTL uartA only

DEF start.counter = 6 * bpw : -- read uartB only
DEF set.output.port.bits 6 * bpw : -- write uartB only

DEF stop.counter = 7 * bpw : -- read uartB only
rEF reset.output.port.bits = 7 * bpw : -- write ualrtB only

-- declare register values
-- MR1 mode register 1

DEE rx..rts.control = #00 ' -7] no rts control
DEF rx.int.select = #00 : -- '6] interrupt on rx.ready
DEF error.mode = #00 : -- character error mode
DEF parity.mode = #10 : -- 4:3] disable parity
DEF parity.type = #00 : -- even parity
DEF bits.per.char = #03 : -- 1:0] 8 bits per char

DEF MR1.control = rx.rts.control \/
rx.int.select \/

122

error.mode
pari.ty.mode \

~its.per.char

-- MR2 mode register 2

DEF channel.mode = #00 : -- 7:6] normal channel mode
DEF tx.trs.control = #00 : - [5] rts control not used
DEE cts.enable.tx = #00 [4 cts control not used
DEE stop.bit.length, = #07 : 13:0] 1.000 stop bits

DEF MR2.control = channel.mode \
tx.trs.control.\
cts.enable.tx \
stop.bit.length

-- CR command register

DEE bit.seven = #00 : -- [7] not used must be zero

(- 6:4] misc comds never combined

DEE no.command = #00 :
DEF reset.mr.ptr = #10 : -- make mode register point at IRI
DEF reset..rx = #20:
DEF reset.tx = #30 :p
DEF reset.error = #40:
DEE reset.break =#50
DEE start.break = #60:
DEF stop.break = #70:

DEE ensable.rx = #02 : 2-[3DEE diable.rx
= 01 : 31 2DEE enable.tx = #04 : -[1]

DEE disable.tx = #08 : -[0]

-- SR status register

DEE received.break = #80 : -- 7
DEE framing.error = #40 : 6
DEE parity.error =#20 : '
DEE overrun.error = #10:
DEE tx.empty = #08 : '3
DEE tx.readY = #04 :-'
DEE fifo.fu 1 = #02 : '1
DEE rx.ready = #01 : L01

-OPCR output port configuration register

M-!ask this beast out before programming the timer

DEF OPCR.control = #00 -- [7:01 mask out output port

-ACR aux control register

DEE brg.set.select = #00 (- 7] select set 1 baud rates
-- for CSRA

DEE counter.timer.mode =#00 : -[6:4] external counter
DEE delta.ip3.0.int = #00 :-13:0] no bits in IPCR affect

-- in IMR [7]

DEE ACR.control = brg.set.select
counter.timer.mode \
delta.ip3.0.int

-IMR interrupt mask register

12.3

DEF IMR.control = #00: -- [7:0] no interrupts

-- PAL bit registers

-- RS232 RX data and switches

-- T414 i/o procs
-- PROC reset.uart (VALUE uart,baud.rate)
PROC reset.uart (VALUE uart, baud.rate)=

VAR now, the.future
SEQ

PUTBYTE (reset.mr.ptr\/disable.rx /disable.tx,uart+command.reg)
PUTBYTE (MR1.control, uart + mode.reg)
PUTBYTE (MR2.control, uart + mode.reg)
PUTBYTE (ACR.control, uartA + aux.control.reg)
PUTBYTE baud.rate, uart + clock.select.reg)
PUTBYTE (no.command\/enable.rx /enable.tx,uart+command.reg).,--wait a bit
TIME the.future
TIME ? now
the.future := the.future + #40000
WHILE the.future AFTER now

TIME ? now

SKIP:

-- PROC read (CHAN out, VALUE uart)
PROC read CHAN out, VALUE uart) =

-- read from keyboard with deschedule between polls
VAR status, ch
SEILE TRUE

SEQ
-- read status
GETBYTE (status, uart + status.reg)

-- wait for received character
WHILE (status /\ rx.ready) = 0

PAR
SKIP
-- try status again
GETBYTE (status, uart + status.reg)

-- read the character
GETBYTE (ch, uart + rx.reg)

-- output the character
out ! ch

SKIP :
PROC write (CHAN in, VALUE uart)

PROC write (CHAN in, VALUE uart)

-- write to uart
VAR uart.failed
SEQ

uart.faiied := FALSE
WHILE TRUE

VAR ch
SEQ

in ? ch
IF

(ch < 0) OR (uart.failed)
SKIP

TRUE
-- wrch (VALUE ch, uart) with timeout
DEF timeout = 3200000
VAR status, count
SEQ

status : 0

124

'.

count :=0
WHILE ((status /\ tx.ready) = 0) AND (count < timeout)

8EETBYTE (status, uart + status.reg)
count :=count + 1

IF
count = timeout
uart.failed :=FALSE --- TRUE

TRUE
PUTBYTE (ch, uart + tx.reg)

SKIP

-main program
VAR uart
SEF

port =0

uart uartA
TRUE

uart :=uartB
reset.uart (uart, baud.rate \/(baud.rate << 4))
PAR

read (Keyboard, uart)
write (Screen, uart)

SKIP

125

-- main body of the operating system
SEQ

-- receivin the routing table
route.table 0 tO --- output link to transp #0
route.table 1 t1 --- output link to transp #1
route.table 2' t2 --- output link to transp #2
route.table 3 = t3 --- output link to transp #3
route.table 4 : t4 output link to transp #4
route.table 5 = t5 output link to transp #5
route.table 6 t6 --- output link to transp #6
route.table 7 t7 --- output link to transp #7
route.table 8 t8 --- output link to transp #8
route.table 9 t9 --- output link to transp #9
route.table I tl0 --- output link to transp #10
route.table 11' til --- output link to transp #11
route.table 12' t12 --- output link to transp #12
route.table=3 output link to transp #13
route.table[14 = t14 --- output link to transp #14
route.table[IS. t15 output link to transp #15
route.table L 16] t16 --- output link to transp #16
route.table [171 t17 --- output link to transp #17

PAR
output.handler
input.handler
:erminal.driver(Keyboard,Screen,port,baud)
screen.handler

1

S.

126"

APPENDIX E
THE OPERATING SYSTEM FOR REMOTE TRANSPUTERS

(REMOTEOS.TDS)

* Title: REMOTE OS.TDS * Version: 1.0 *
* Author: MAURICIO DE MENEZES CORDEIRO * Mod: 0 * *

* Date: 13/MAI/1987
Programming Lanquage: OCCAM 1

* Compiler: IMS _600 (VAX/VMS) ,
* Brief Description: This program contains the source *

code for a communications operating system for remote*
processors in a network of wransputers. it must be "
p laced in oarallel with the user-process. *

* Mod #: Date: *
* Responsible: *
* Brief Description: *

* od #: Date: *
- Responsible: ,
* Brief Description: *

-- Operating System global declarations
DEF rax.block.size = 4100:
DEF nr.of.transputers = 17:
DEF header.size = 4:
DEF scrn = 40: --- channel screen
DEF max.io.channels = 25: --- 0 up to 240, in tenths
DEF max.screen.channels = 5:
VAR route.tablel18]:
VAR flag [BYTE 1]: --- for the library routines
CHAN chan [10 * max.io.channels]: Actually it should be

---(10*(max.io.channels-1))+8
CHAN screen [max.screen.channels]:

4.

-- global def.tds

At :his joint -4e should imbed the filed -old
--- global def'.tds, whicn is described in Appendix B

-- Operating System Channel Placements
CHAN linkO AT linkOin
CHAN !inkl AT lInklin
CHAN link2 AT link2in :
CHAI 7ink3 AT L-nk3in
CHAN Link4 AT 'ink0out:
CHAN 7ink5 AT linklout:
CHAN link6 AT link2out:
CHAN link7 AT link3out:

-- remote lib.tds
-- io-routines

-PROC dec.to.hex (VALUE inteier,*VAR strin4]

--- DESCRIPTION: It converts an integer number from its *
--- decimal representation into the equivalent hexadecimal *

one. It accepts any valid integer. It returns the *

127

--- hexadecimal number stored in a string of 10 bytes long *
where the leading zeros are preserved *
It returns the following format: [size]#0000FFFF *
USAGE: dec.to.hex(37182,hex.string) *
REMARK: The BYTEr0] of the string carries its length *
which is always 9, therefore it could be deleted, but *
we decided to keep it *

PROC dec.to.hex (VALUE integer, VAR string []) =
VAR first, order.of.digit, digit
VAR number :
DEF hex.char = "0123456789ABCDEF"
SEfirst := TRUE

string rBY TE 01 : 9
string BYTE 1]
number := integer
order.of.digit := 9
WHILE (number > 0) OR (first=TRUE)

SE~igit : number /\ #F

digit : hex.char [BYTE digit + 1]
string [BYTE order.of.digit] := digit
number := number >> 4
order.of.digit := order.of.digit -
first := FALSE

SEQ i = (2 FOR ;order.of.digit -
string (BYTE i] ;= '0':

-PROC dec.to.ascii (VALUE inteper, VAR string

--- DESCRIPTION: It converts an integer number from its *
decimal representation into the equivalent ASCII one. It *

--- accepts any valid integer number. it returns the ASCII
number stored in a string of 12 bytes long, where the *

--- number is right justified and i as the ollowing *
format: - 3 42 --- > 1-11 1 I 11 11 '1 I 113115141 21 *

1922937 ---> 1 11 11 11 1 .1191121121191131171
USAGE: dec.to.ascii(-9873,ascii.string) *
REMARK: The BYTE[O] of the string carries its length *
which is always 11, therefore it could be eliminated, but*
we decided to keep it. *

PROC dec.to.ascii (VALUE integer, VAR string [3) =
VAR number :
VAR order.of.digit
DEF min.int = - 2147483648

SEQ
number : integerorder.of.digit :11i
string [BYTE 0] 11
IF
number = min.int

-- taking care of the limit caseSEQ
string BYTE 1 := 1-1
string BYTE 2 : 121
string BYTE 3 : '1'
string BYTE 4 : '4'
string BYTE 5 : 171
string BYTE 6 : '4'
string BYTE 7 : '8'
string BYTE 8 : 131
string BYTE 9 : '6'
string BYTE 1 : '4'
string BYTE 11 : 8

128 .

-WW V- Y -.- - -- -trI M- 'W S-'% -

TRUE
SETF

number = 0
SEQ

string tBYTE 11string LBYTE 11 J: 0'
order.o fdigit :10

number < 0
SEQ

number :-number

TRUE srn [BT 11--number > 0
st ring [BYTE 1]

-building up the actual number
WHILE number > 0

SEQ
string [BYTE order.of.digit] := (number \1~0) + '0'
number := (number / 10)
order.of.digit :=order.of.digit - 1

SEQ i =[2 FOR (order~of.digit - 1)]
string (BYTE i]

PRO he~todec(VAUEstrin~jU VAR integer, OKI,

--DESCRIPTION: it accepts a hexadecimal representation of*
--a number and converts it into an inte ger number. It *
--expects the byte[0] of the string to c arry the size*
--information ot that "hex number".*
--USAGE: hex.to.dec ('"*000037a5" ,numberqvalid)*
-- hex.to.dec ("1#1452",number,valid)*
-- hex. to.dec ("#19574",number,valid)*
-- ascii.to.dec (hex string,number valid)*
--REMARK: Returns a boolean value FALSE In OK if the*

strinq is not in the correct format.*

PROC hex.to.dec (VALUE stri-ng [VAR integer, OK)=
SEQ

integer := 0
IF

- emty stringstring BYTE 0 0
OK := FALSE

-- hex number
string [BYTE 0] <> 0
IF

-starts with 1#1
string [BYTE 1] = 1#1
VAR Count
SEQ

OK := TRUE
Zount :=
WHILE (Count <= string [BYTE 0]) AND OK

VAR Digit:
SEQ

DEF hexChars = "10123456789ABCDEF":
IF
IF Index = [1 FOR hexChars [BYTE 0]]
hexChars[BYTE Index] = string [BYE Count]
TREDigit := Index - 1

OK :FALSE
integer :(integer << 4) + Digit
Count Count + 1

129

-- otherwise
string [BYTE 1] <> 1#1
OK := FALSE

SKIP :

-- PROC ascii.to.dec (VALUE strinq[], VAR inte er, OKI * *
._. **

--- DESCRIPTION: It accepts an ascii decimal *
re resentation of a number and converts it into an *
integer number. It expects the byte[O] of the strinq *
to carry the size information of that "ascii number n . *
--USAGE: asciitodc ("-3785",number,valid)

ascii.to.dec ("+1452",number,valid) *
--- ascii.to.dec ("19574",number,valid) *

ascii.to.dec (string,number valid) *
REMARK: Returns a boolean value FALSE in OK if the *
strlng is not in the correct format. *

PRCC ascii.to.dec (VALUE string [3, VAR integer, OK) =
SEQ

integer := 0
iF
-- empty str :ng
string 7BYTE 0? = 3

OK := FALSE

-- number
string [BYTE 01 <> 0

VAR Sign
VAR Start
VAR Length
SEQ

OK : TRUEIF "-- negative

string [BYTE 1] =
SE~ign

:= - 1
Start : 2
Length := string [BYTE 0] - 1

-- positive
string [BYTE 1] <> '-'

SE i n : I

Start := .
Length := string [BYTE 0]

-- convert to integer
SEQ Index = [Start FOR Length]
VAR Digit
SEQ

_igit := string [BYTE Index]

<= Digit) AND i'Digit <= '9')
integer := (integer x 10) + (Digit - '0')

TRUE
OK := FALSE

integer := integer * Sign
SKIP

-- PROC rem.write.number (VALUE inteqer root.number

--- DESCRIPTION: This PROC outputs a signed integer value to *
--- the screen. It left justifies the number, so that if you *

need it right justified, use the dec.to.ascii and then *

130

.+ -- .- -. - ..+ . . ,- . , --, - .. . , .. '. -. .- ,- . " . . . " " " '- ", ". ". +. -, -, ", -, ", ", -, 0"

the write.strinq routines.
--- It uses the folowing format: *

0 --- >0 *
-234193 --- > -234193 *

1496 ---> 149 *
USAGE: write.number (integer) *

--- write.number(135)
--- REMARK: IT IS TO BE USED JUST IN REMOTE TRANSPUTERS *

PROC rem.write.number (VALUE integer, root.number) '
DEF min.int = - 2147483648
DEF max.digits = 11
VAR number, 3:
VAR order.of.digit
VAR digit BYTZ 121
"VAR string-'BYTE .21

number integerorder.of.digit := 1i__-

number =
send 40,root.number, '0

number = ,nn.int
send 40,root.number."-2147483648",i,1l)

TRUESE9 :
.F
nunber < 0

SEQ
number - number
string [BYTE 0] =

TRUE --- number > 0
string [BYTE 0]

WHILE number > 0

SEsigit [BYTE order.of.digit] := (number \ 10) + '0'
number := (number / 10)
order.of.digit := order.of.digit - 1

SEi = [(order.of.digit+l) FOR (max.digits-order.of.digit)]
EQ.

string [BYTE j] := digit [BYTE i]

send (40,root. number,string,oj)

- PROC rem.clear.screen "ALUE root.number , .

DESCRIPT:CON: it clears the screen and homes thle cursor.
uSAGE: clear.screen *
REMARK: IT iS TO BE USED JUST IN REMOTE TRANSPUTERS *

PRO- :em.zlear.screen (VALUE root.number) ="A -r~nc -BT. "

_;trina "BYTE i esc --- clear screen sequence
string BYTE

string BYT- 3 'j'

string [BYTE 4 esc --- home cursor
string BYTE 5] P
string BYTE 6 =H"

send (40,root.number, string,0,7):

131

- , . - - * ' r, . -- -- .. -. f --. -

:PROC rem. os cursor*IAU line column root number
DESCRIPTION: Positions the cursor in a specified line and*
column. We have used the ANSI escape sequence*
ESC jLine;Column H.*
USAGE: pos.cursor (8,30)

--REMARKl: Valid values for line are 0 up to 24*
Valid values for column are 0 up to 80*

--REMARK2: Values out of the above range will cause*
unpredictable results.*

--REMARK3: 1T 1S TO BE USED JUST IN REMOTE TRANSPUTERS

PROC rem.pos.cursor_(VALUE line, column, root.number)
VAR string BYE81:
VAR x 'BYTE Z!, Y BYTE 2]1

,,line < 1,3) AND (line ~J
SEQ ~YE :'

y BYTE 1] := line + #30
(line >= !0) AND (li.ne <= 24)

SEQ
y BYTE 0]:(line/1.O' + #3 0
Y LBY- 11 ,!~inle\1J) + 30

:RUE
SKIP

IF
, column <~ 10) AND "column >= 0)

SEQ

" [BYTE 1 : column + #30
(column >= 10) AND (column <= 80)

SE [BYTE 0 : "column, 10, + #30

" BYT 1]: column\ 10) + #30
TRUE

SKIP
string BYTE 0] esc
stri.ng :BYTE 1 I
string BYTE 2' y BYTE 01string BYTE 3. BYTE 11
string BYTE 4
s tring BYTE 5 x BYTE 01
string BYTE 6'~ BYTE lj
stlring BYTE 71 .
send Oro~unrsrn,,~

-PROC rem.new.line (VALUE number 'oot number)

--DESCRIPTION: It will skip as many lines as specified in*
its parameters list.
USAGE: new.line(4)*
RE:!ARKl: Negative numbers will not give any new lines.*

- -- RE::ARK2: ;7 TO 30E USED :UST :N~ 7RENOTE :RAN4SPUTERS

PROC rem.new.line (VALUE number, root.number)
VAR string [BYTE 2]:
SEQ

string[BYTE 0] :cr
string [BYTE 1] :lf
SEQ i = [0 FOR number]

send (40, root.number,string,0,2):

~PROC rem s~ace~iAU number root.number

132

%S

-%K 1 %n VVi

--- DESCRIPTION This procedure provides spaces for formatting*
a single line. *

--- USAGE: space(S) *
REMARK1: This routine does not provide an automatic if *
after reaching the end of the line. *
REMARK2: IT IS TO BE USED JUST IN REMOTE TRANSPUTERS *

PROC rem.space (VALUE number, root.number) -

VAR string [BYTE 1]:
SEQ

string [BYTE 0] := sp
SEQ i = [0 FOR number]

send (40,root.numberstring,0,1):

-- PROC rem.tab (VALUE number roor.number)

--- DESCRIPTION This procedure provides tabs for formatting a-
single line. Each tab is equivalent to 8 spaces if the *

--- terminal is using the default set up. *
--- USAGE: tab(6) *

REMARKi: This routine does not provide an automatic lf *
after reaching the end of the line. *
RE ARK2: IT I TO BE USED JUST IN REMOTE TRANSPUTERS *

PROC rem.tab (VALUE number, root.number) =
VAR string BYTE 1]:
SEQ

string [BYTE 0] := tab
SEQ i = [0 FOR number]

send (40,root.number,string,0,1):

:: PROC send(VALUE channel iddest.transR.messae(]. start.bytesize)

--- DESCRIPTION: It is an operating system routine, and it *
is used to communicate between processors. It builds the *
header of the message to be sent. It has as parameters *
the channel id of t e channel which is going to carry on *
the communications, the id of the destination transputer *
for that message, the start byte and the size of the *
message to be transmitted. For every send must exist a *
receive for that same channel id in the destination *
transputer. *
USAGE: send (70,4,message,1,0) *
REMARK: The user must be familiarized with the Operating *

--- System Structure before using this routine. *

PROC send (VALUE channel.id,dest.transp,message[],start.byte,size)=
VAR out,message.size,header [BYTE 5]:
SEF

size <= 0 --- send from the start.byte all way to the end.
--- this method is valid tor messages up to 255 bytes.
--- even for size < 0 it behaves like it was a 0.

message.size : (message[BYTE 0] - start.byte) + 1
TRUE

message.size : size

header (BYTE 1] : message.size 256 --- block.size (# of 256 bytes)
header "BYTE 21 : message.size\256 --- (+ remainder
header "BYTE 3] := channel.id --- any tenth from 40 up to 240
header [BYTE 4] : dest.transp --- destination transputer
out := route.table [dest.transp]
BYTE.SLICE.OUTPUT (chan[channel.id + out],header,3,1) --- ready flag
IF

out 4

133

V ,%

SE YTE.SLICE.OUTPUT (link4,header,l,header.size)

BYTE.SLICE.OUTPUT (link4,message,start.byte,message.size)
out = 5

SE YTE.SLICE.OUTPUT link5,header,1,header.size)

BYTE.SLICE.OUTPUT link5,message,start.byte,message.size)
out = 6

SEQ
BYTE.SLICE.OUTPUT (link6,header,l,header.size)
BYTE.SLICE.OUTPUT (link6,message,start.byte,message.size)

out = 7
SEQ
BYTE.SLICE.OUTPUT (link7,header,l,header.size)
BYTE.SLICE.OUTPUT (link7 message,start.bytemessage.size)

BYTE.SLICF.OUTPUT (chan[channei.id + out],header,3,1): --- done flag

PROC receive (VALUE channel.idVAR message[], message.length[])

--- DESCRIPTION: It is an operating system routine, and it *
is used to communicate between processors. It receives *

--- the incoming message, and provides as an output parameter *
the size of the message just received. The parameter *

--- channel id must have an exact match with the send *
--- 0 eration which oriainated that message.
--- UAGE: receive (7Om-essage.in,size)
--- REIMARKI: The user must be familiarized with the Operating *

System Structure before using this routine. *
REMARK2: Notice that the message.length output parameter, *
must be a unity array of integers, while the message *
itself must be declared as an array of btes. *

PROC receive (VALUE channel.id,VAR message[],message.length[])=
SE ORD.SLICE.INPUT (chan[channel.id ,message.length,0,1 ength[0 :

BYTE.SLICE.INPUT (chantchannel.id ,messagel,message.])

-- utilities.occ
-- PROC rem.tick.to.time (VALUE start stop board.tne root.number)...- ******,************** ************* ********* *,*******

--- DESCRIPTION: It expects the board type which can be : *
board.type = 0 ----> OPS (VAX VMS) *
board.type = 1 ---- > B001 (T414:12.5 MHz)
board.type = 2 ---- > B002

--- board. type = 31 ---- > B003 (1414:15 MHz - high pri) *
--- board.type = 32 ---- > B003 (T414:1 5MHz - low pri) *
--- board.type = 4 ---- > B004 *

and 2 signed integers representing some tick values *
obtained by an assignment of the type TIME ? time.var *
It then outputs the corrected elapsed time in hours, min,*
sec and msec, already taking into account the fact that *

--- the timer wraps around when it reaches MAXINT or MININT. *
- USAGE: tickk.to.time (timel,time2,31) *
REMARK: Although it takes care of the wrapping, it won't W
keep track of the number of times you have completed one *
full cycle of the timer. In order to solve this problem *
you should record roughly the start time. For example, in*
the VAX/VMS, the full cycle of the timer is 7.2 min, so *
if you get the elapsed time of 5 min 7 sec 320 msec and *
you have got a rough total time of 12 minutes, then the *

--- real total time is 12 min i sec 320 msec. *
--- REMARK2: IT IS TO BE USED JT'ST IN REMOTE TRANSPUTERS *

PROC rem.tick.to.time (VALUE start, stop, board.type, root.number) =
-- constant definitions

134

DEF vax.sec =10000000 . - hundreds of nsec/second
DEF vax.mili = 10000 . - hundreds of nsec/miljsecondp
DEF b001.sec = 625000 : # of 1.6 usec/second
DEF bOO1.milj = 625 : # of 1.6 usec/milisecond
DEF bQO3h.sec = 1000000 : # of usec/second
DEF bOO3h.mili = 1000 * of usec/milisecond
DEF b0031.sec = 15625 : # of 64 usec/second
DEF b0031.mili = 16 . # of 64 usec/milisecond

DEF max.number.of.ticks = 2147483648 -- maximum integer (2**31)
VAR elapsed.tick
VAR factori, factor2
VAR msec, tot.sec, sec, min, hr

SEF

!Doard. type --- VAX VMS

:actor'L vax. se c
factor5 v.axnili

board.type =1 -- BOOl

S'actorl bOO1.sec
fac:tor2 b001..nlii

board.tv--e =2 -- 3002
SKI-P not implemented

board.type =31 -- B003 in high priority
SE!actorl b0O3h.sec

factor2 b0O3h.mili

board.type =32 -- 5003 in l.ow -rioritv

?actor1 b0031.sec
factor2 b0031.mi

board type =4 -- 3004
SKIP - not implemented

elapsed.tick stop - start
IF lasdtc<0

elapsed tick :=elapsed.tick + max.nuxnber.of.ticks
TRUE

tot.sec elapsed.tick/factorl
hr :tot.sec/3600
min (tot.sec\3600)/60
sec tot sec\ 6
msec (elapsed tick\factorl)/factor27

-- output time to screen
rem.write.number (hr,root.number)
send .,40,root.number," r ",,
rem.write.number (min,root.number)
send (40,root.number,'1 min 1,0)
rem-write.nuxnber(secroot.numnber)
send (40,root.number,I sec 11,1,0)
rem.write.number(msec,rotnubr
send (40,root.number," msec",1,.0):

PRO dm*VLEbegin.address count root.number~

--DESCRIPTION: This procedure dumps the memory starting at*
--the given "begin.address". The value for the*

135

7%

--- "begin.address" can be either in hex or decimal. *
--- The count value determines how many words in memory will *
--- be retrieved. *
--- USAGE: a) dump (#80003540,100) *

b dump (1024,48) *
c) dump (-5113,1024) *

--- REMARK1: When specifying the count value remember that *
--- the retrieval is done by words, not bytes!!! *,
--- REMARK2: If count is not a multiple or 4 it will use the * '.

--- closest upper multiple. *
--- REr2RK3: Negatives or zero values for count although *

Saccepted, wIll give you no output. *
REIARK4: IT IS TO BE USED JUST IN REMOTE TRANSPUTERS *

?R:C 4uma VAL'E begin.address, count, root.number)
';AR c d. r-ad:
':A-, e a .ue01, hex.addr[10]:
An adress, al.an, z:mes:

SEQ
:zmes : 0
rem.new.line(l,root.number)
address := beain.address

a-, nin a aiven address
-i: aress',4

3~Ol <> 2
aadress : address - align

TRUESKI?

WHILE times < count
SEC

send (40, root.number, "address 11,1,0)
iec.to.hex 'address,hex.addr)
send 40,root.number,hex.addr, 1,0)
send40,root.number," -- > ",1,0)
SE Q = ECR 410

GETWORD (word.read,address)
dec.to.hex (word.read,hex.value)
.;end (40,root.number,hex.value,l,0)
rem.space(2,root.number)
times := times + 1

SKIP
address := address - 16
rem. ne,; . Iine(1, root. number)

?P.CC transfer.rate (VALUE startstopboard. tveRnr.of.bytesVAR rate)

--- :ESCR:PT:01: It is basically the same routine as *
-ick.to.time, with the only difference that it returns a
r :e %'alue -n Xbits/sec instead of a time value.
3AGE: transfer.rate t-mel,time2,31,4096,rate)
---REYARK: zr :~irter :nformaticn refer to routine

--- :: to. .eme

?RCC transfer.rate (VALUE start,stop,board.type,nr.of.bytes,VAR rate)
-- ccnstanz definitions
DEF vax.sec =10000000 : --- hundreds of nsec/second
:EF b001.sec = 625000 : --- # of 1.6 usec/second
DEE b003h.sec = 1000000 : --- # of usec/second
:EF b031.sec = 15625 : --- # of 64 usec/second
DEF max.number.of.ticks = 2147483648 : --- maximum integer (2**31)

-- variable declarations
VAR e.apsed.tick

136

-. .- -. " .

VAR factor -- to convert ticks to seconds

SEQ
elapsed.tick :=stop -start

IF
elapsed.tick < 0

elapsed.tick :=elapsed.tick + max.number.of.ticks
TRUE

SKIP
-selection of correct factor jaw the board

board type = 0 -- VAX VMS
factor :=vax.sec

board. type =1 - B001
factor :=b001.sec

board.type = 2 -- B002
SKIP -- not implemented

board type = 31 -- B003 in high priority
factor := bOO3h.sec

board.type = 32 -- B003 in low priority
factor :=b0031.sec

board.type = 4 -- B004
SKIP. - -- not implemented

-rate calculation
IF
board. type =32

rate := ((nr.of b~tes*8 *factor)/(elapsed.tick*10OO)
--ooeration is done this way to keep precision ok!

TRUE
rate :=((nr.of.bytes*8) *(factor/1000))/elapsed.tick
--operation is done this way in order to not exceed maxint
--on the numerator.
--multiply by 8 due to 8 bits per byte
--dividby10tohvte tranfer.rate in kbits/sec

d SKIP:

-PROC operating.system
PROC onerating-system =

?R POC inout.handler
PROC input.handler=

-variable and constants declarations
VAR headerO BYTE 5]'

headeri (BYTE 5]
header2 [BYTE 5]
header3 [BYTE 5]

buffer.inO (BYTE max.block size]
buffer.inl [BYTE max.block~si4ze]
buffer.in2 [BYTE max.block.size]
buffer.in3 BYTE max.block.sizeJ,

block.size outo,
block.sizel1 outl,
block.size2 1 ,out2,

blcksze out3:

SE- initializing the buffers
SE i = 0 FOR max.block.size]

137

buffer inO [BYTE ii 0'
buffer~inl [BYTE i 11
buffer.in2 [BYTE i] '2'

SKPbuffer.in3 [BYTE i] '3'

PAR
WHILE TRUE

-- listen to linkO
SEQ

-- receiving the header
BYTE.SLICE. IPUT (linkO,headerO,l,header.size)

-- decoding the block size
block.size0 [0] :=((256*header0[BYTE 1])+header0[BYTE 2]j)

-- buffering the message
BYTE.SLICE. I PUT (linkO buffer.in0,1,block.size0[0])

IF
__ the message is to be bypassed
headerO [BYTE 4] <> this. transputer

SEfinding the best link to output that message
outO :=route.table [headerO [BYTE 4]]

-outputing to the required link
request flag thru chan 4, 3, 6 or 7

BYTE.SLICE.OUTPUT(chan [outO] ,headerO,3,l)

outO = 4
SEQ

BYTE.SLICE.OUTPUT (link4,header0 1 ,header .size)
BYTE.SLICE.0UTPUT (link4,buffer.in0,1,

block. sizea[01)
outO = 5

SEQ
BYTE.SLICE.OUTPUT link5,header04 1,header.size)

BYTESLIC.OUTUTlink5,buffer.a1nO,1,

outo= 6
SEQ

BYTE .SLICE OUTPUT (link6 ,header0 1, header.size)
BYTE.SLICE.OUTPUT (link6,buffer.In0,l,

block. size [0])
outO =7

SEQ
BYTE.SLICE.OUTPUT (link7,header0,1,header.size)
BYTE.SLICE.OUTPUT (link7,buffer.in0,1,

--release fla block.size0(0])
BYTE.SLICE.OUTPgT(chan[out0] ,headerO,3,1)

-the message Is fo r this transputer
headerO [BYTE 4] = this.transputer

--Q passin5 the size of the message (block.sizeO[C])
WORD .SLIC.OUTPUT (chan[header0[BYTE 3]],

block. saze0 ,0, 1)

-- assing the message itself
BYTE .SLIC~ -OUTPUT (chan[headerO[BYTE 31],buffer.inO,1,

block. saze [0])

WHILE TRUE
-- listen to linkl
SEQ

-- receiving the header
BYTE.SLICE. INPUT (linkl,headerl,l,header.size)

138

-decoding the block Size
block.sizel [0] :=((256 * headerl[BYTE 1])+headerl[BYTE 2])

-buffering the messaye
BYTE.SLICE. INPUT (linkl buffer.inl,l1, block.sizel(Ol)

IF
-- the message is to be b~ assed
headeri [BYTE. 4] <> this.transputer%

S-Q finding the best link to outp ut that message%
outi : route.table [headeri [BYTE 4]]

-- outputing to the required link
request flag thru chari 14, 15, 16 or 17

BYT E.-SLICE.OUTPUJT(chan(1O+outl] ,headerl,3,4)
iF

outl = 4
BYTESLIC.OUTUT link4,headerl 1 ,header. size),
BYTESLIC.OUTUT link4,buffer.i.n11I

out! = 5 lcsie[]

S EP
BYTE.SLICE.OUTPUT (link5,headerl.1.h-eader.3:ze)
BYTE.SLICE.OUTPUT (l1inkS.buffer...nl,l.

6lock. sizel,,0 I)
outi 6

SEQ
BYTE.SLICE.QUTPUT (link6,header1,1,header.s~ze)
BYTE.SLICE.OUTPUT (link6.buffer.in1,l,

block.sizel[O])
outl 7

SEP
3YTE.SLICE.OUTPUT (link7 ,headerI~,Iheader..1ze-)
BYTE.SLICE.OUTPUT (link7,buffer.i.nl,l,

--release flag block.sizel(O])
BYTE.SLICE.OUTPUT(chan[lO+outl] ,headerl,3,4)

-the message is for this transputer
headeri [BYTE 41 = this.transputer

SEQ
-- passin5 the size of the message (block.sizel[O])
WORD.SLICE.OUTPUT (chan[headerl [BYTE 3]]

block.sizel,Q,1)

-- zoassin2 the message itself
BYTt.SLIC .OUTPUT cnan~headerl [BYTE 3]] ,buffer.inl,

l,block.sizel[0])

WHILE TRUE
-- listen to link2
SEQ

-- receiving the header
BYTE.SLICE. .NPUT (link2,header2,l,header.size)

-- decoding the block size
block.size2 [0] := ((256 * header2[BYTE 1])+header2[BYTE 2])

-- buffering the messa ae
BYTE.SLICE. INPUT (link2 ,buffer.in2,l,block.size2[0])

IF
__ the message is to be brpassed
header2 [BYTE 4] <this. r ansputer

SE- finding the best link to output that message
out2 route.table [header2 [B YTE 4]]

139

-outputing to the required link
request flag thru chan 24, 25, 26 or 27

BYTE.SLICE.OUTPUT(chan [20+out2] ,header2,3,1)

out2 =5
SE YTE.SLICE.OUTPUT flink5 ,header2 ,l,header.size)
BYTE.SLICE.OUTPUT link4,buffer. n2,1,

block. size2 [0])
out2 =6

SEQ
BYTE.SLICE OUTPUT (link6 header2 i,header.size)
BYTE.SLICE.OUTPUT (lznkbuffer.:ln2 1,

out2 = 6 lock.size 161)

SEQ
BYTE.SLICE.OUTPUT (link7 ,header2 ,1,header.s-,ze)
BYTE.SLICE.OUTPUT (link6,buffer.in2,1,

re~ese 3T~hanblock-size2[0J1)

heade 2 =BT 4]7 ti~tasu
SEQ

-pasigthe.sLize.of the (ln7mesaer2(bJhockr~size2])
WOR .LIE .SLUTPPU channheader2 FBTE 3]]

e7 1Cblock.size2 ,0,)

-- assinc h io the message tselfie20]

BYTt.SLICS.OUTPUT cnan~header2 [BYTE 3]] ,buffer.in2,
l,block.size2(o])

WHILE TRUE
-listen to link3

-receiving the header
BYTE.SLICE. INPUT (link3,header3,1,header.size)

-decoding the block size
block.size3[01 := ((256 * header3[BYTE lD)+header3[BYTE 21)

-- bufferina the messa e
aBYTE.SL:CE.INPUT (l'ink'-,buffer.in3,,block.sze3II01)

I-- the message is to be b yp assed
header3 [BYTE 4] <> this. tr-ansputer

SEQ_
-finding the best link to output that message

out3 ;=route.table [header3 (BYTE 4]]

-outputing to the required link
--request flag thru chan 34, 35, 36 or 37

BYTE.SLICE.OUTPOT(chan [30+out3] ,header3,3,l)
IF

out3 = 4
SE SYTE.SLICE.OUTPUT (link4,header3,1,header.size)

BYTE.SLICE.OUTPUT (link4,buffer.in3,1,

out3 = 5block.size3[0])

SE YTE.SLICE.OUTPUT link5,header3 1, heade r.size)
BYTE.SLICE.OUTPUT link5,buffer.in3,1,

140

out3 =6 block.size3jo])

SEYT~E -SLICE-OUTPUT (link6 ,header3(l,header.size)

BYTE. SLICE. OUTPUT (link6 ,e. in3, 1,

out3 =7block.size3[O])
SEQ
BYTE.SLICE.OUTPUT (ink7,header3,l,header.size)
BYTE.SLICE.OUTPUT (lirk7,buffer. n3,1,

--release fla block.size3[O])
BYTE.SLICE.OUTP T(chanI3O+out3] ,header3,3,I)

-the message is for this tr-ansputer
header3 [BYTE 4] = this.transputer

SEQ
-- assincr the size of the message (block.size3'01

WORfl.SLIC9.OUTPUT (chan[header3b BYTE 3]],
o~ck.size3,0,1)

-passing 'the message itself
BYTE .SLICE .OUTPUT (chan[header3 [BYTE 3]],buffer.in3,

l,block.siie3[]))

-PROC output.handler
PROC output.handler =

-local variable declarations
VAR flag4 [BYTE 2]:
VAR flag5 tBYTE 21:
VAR flag6 [BYTE 2]:
VAR flag7 [BYTE 2:

?AR
WHILE TRUE

ALT i = R0 FOR max.io.channels]
chan [(10*i) +4] ? flag4 [BYTE 0]-- for link4

BYTE.SLICE.INPUT (chan [(10*1) +4],flag4,0,l)
WHILE TRUE
ALT j = [0 FOR max.io.channels)

chan [(10*j) +5]U? flag5 [BYTE 0] -- for link5
BYTE SLICE.INPUT (chan [(l0*j) --5],flag5,0,1)

WHILE TRUE
ALT k = 0 FOR max.io.channels]

chan [(l0*k) +61 ? flag6 [BYTE 0] for link6
BYTE SLICE.INPUT (chan [(l0*k) +6],flag6,0,l)

W4HILE TRUE
ALT 1 = [0 FOR max.io.channels]

chan f (10*1) +7] ? flag7 [BYTE 0] -- for link7
BYTE.SLICE.INPUT (chan [(10*1) +7j',flag7,O,1):

141

-% I W

-- main body of the operating system
-- receivin the routing table
route.table 0' to --- output link to transp #0
route.table 1 : t1 --- output link to transp #1
route.table '2 t2 --- output link to transp #2
route.table :3 t --- output link to transp #3
route.table :4 t4 output link to transp #4
route.table 5 = t5 --- output link to transp #5
route.table 6 = t6 --- output link to transp #6
route.table 7 : t7 --- output link to transp #7
route.table S' t0 --- output link to transp #8
route.table 9' t9 --- output link to transp #9
route.table 1 : t1- output link to transp #10
route.table 11' t1l --- output link to transp #11
route.table 12 : t12 --- output link to transp #12
route.table 13 : t13 --- output link to transp #13
route.table 14' t14 --- output link to transp #14
route.table 15 : t1 --- output link to transp #15
route.table [161 t1U6 -- output link to transp- #16
route.table [17] Ut7 -- output link to transp #17

PAR
output.handler
input.handler:

142

". A -ft. 'a ,a a. - .. ,.*. -. . , . , - .. ., .,.-...- , .. . - . - .. , - -

V.

APPENDIX F

THE EVALUATION PROGRAM FOR THE OPERATING SYSTEM
(EVALOS.TDS)

-- PROGRAM os.evaluation
-- os.evaluation
-- SC PROC hostproc
-- PROC hostproc(CHAN A,B,C,D,E,F,G,H,VALUE this.transputer, route.table)
PROC hostproc(CHAN A,B,C,DE,F,G,H,

VALUE this .transputer,
t0,tl.c2,t3,t4,t5,t6,t7,t8, t9,

-- root os.tds

--- In this alace should be imbedded the filed fold * S
--- ROOTOS."DS, which contains the source code of the *

-- eratina system tor the root transouter. *
:ts fully ocumented in Aum endix AZ-

-- PROC user.interface
PROC user.interface =

-- constant and variable declarations
DEF sizetable = TABLE [1, 2, 4, 8, 16, 32, 64, 128, 256,

512, 1024, 1280, 2048, 4096]:
DEF nr.of.sizes = 14: --- # of entries in the above table
DEF naxblock.size = 4096: --- max from the above table
VAR bufferO BYTE maxblock.size + 11

bufferl BYTE maxblock.size + 11, p
buffer2 BYTE maxblock.size + 1]
buffer3 BYTE maxblock.size + 1]:

VAR run : --- number of runs made (RUN #)
VAR answer (BYTE 2] : --- user's choice in continue or quit
VAR repetition : --- number of times to carry each xfer
VAR dummyO[],dummyl[i],dummy2[1],dummy3[l]

-- PROC write.header
PROC write.header =
--- wrtes the header of the output table

SEQ
run := run + 1
clear.screen
write.string ("RUN #
write.number (run)
space(3)
write.string ("CPUs IDLING
space()
write.string ("BYTE.SLICE.input/output")
space 2,
write.string ("Repetition=
write.number (repetition)
new.line(2)
write.string ("BYTES lOUT !IN 2OUT 21N 3OUT 31N ")
write.string (1"4OUT 41N 4INOUT")
new. line (1):

-- PROC transfer
PROC transfer =
-- variable declarations
VAR block.size,

actual.rate,

143

6'

-j W-VV V I .VWWr _ -_.W_%% W- 1.71" U-

rate,
chOtBYTE 21,chl(BYTE 2],ch2[BYTE 2],ch3(BYTE 2],
timeO r1
timel (4

SE~ ?E0 FOR nr.of.sizes]

Q - making the table after each io operation
block.size :=sizetableli]
write.number (block.size)
tab (1)

-output to one channel
actual.rate :=0
SEQ j = [1 FOR repetition]

SEQ
send (90, a '1

:end (,90, 3,:uf:er0,I,1biock.size)
.;,ME ? timel[g]
ransfer.rate(timeO[Q],timel(O],1,block.size~ rate)

actual-rate :=.((actua±L.rate x (i-i)) + rate)/j
SKIP
wr.:~uioer (actual.rate)
ta z

- - inout --:,m one channel
actuaI.rate 3=
SEO j =[1 FOR repetition]

SEQ
send (90,0,"a :114)
TIME ? tm.reO[o1
receivek50,bufifer0,dummyO)
TIME ? timel[O]

i4j~transfer.z-ate(timeOfa] --me [1,,block.size rate)
actual.rate :=((actual rate ' (-1)) + ratej/j

SKIP
wz-ite.number (actual.rate)
tab (1)

;-output to two channels
actual.rate :=0
SE3 j = (1 FOR repetition]

A R

send M0,1,ja ",I''p
71":E ? timeO[01

send (90,),buffer0,1,block.size)
send(100,1 bufferl,l,block.size)

TIME ? timello]
transfer.rate(timeO0] timel[03 ,1,block.size rate)

SKPactual.rate :=((actuai.rate * j-l)) + rate5/j
SKIPenme ata~ae
tab 11

-- input from two channels
actua±.rate :=0
SE 3j =[I FOR repetition]

PAR
send (90,0,"a 11,1,1)
send (MOO,12 " 11

TIME ? time0[O
PAR

receive 50,buffer1,dummy12

TIME ? timeltol

144

Ir, P6 -i.WM r% %' r"rR

transfer.rate(tineoOO timel[O],1,block.size rate)
actual.rate :=((actuai.rate *(j-1i)) + ratej/j

SKIP
write.nunber (actual.rate)
tab (1)

--otput to three channels%
actual.rate :=0%
SE? Ej =[1 FOR repetition]%

send (90,1,a 11,1,1)
send (106,1,"a 11,1,1)
send (10,2,1'a 11,1,1)

TIME ? timeO[O]
PAR

send (90,0,bufferO,l1.block.size)
send (IO,1,bufferl,:,block.size)
send(110 2 buffer2,i,block.size)

TIME ? time1[o]
transfer.rate(timeO[O] timel[O] 1,block.size rate)
actual.rate :=((actuai.rate * j-l)) + rateS/j

SKI?
write.number (actual.rate)
tab ,1)

-- inout from three channels
actual.rate :=0
SEQ j = [1 FOR repetition]

5EO
PAR

send (90,0,"a "1,11)
send (100,1,"a 1",1,1)
send (110,22a1,1

=21E ? timeO(O]
PAR

receive 50,buffer0,dummyo

receiveM 7 buffer2,dummy2$
TIME ? timeito]
transfer.rate(timeO[O] timelfol ,1,block.size rate)
actual.rate :=((actuai.rate * (-1)) + rate /j

SKIP
write.number (actual.rate)
tab (1)

-- output to f?our channels
actual.rate :=0
SEQ 3 = [1 FOR repetition]

PAR
send (90,0,11a 11,1 1)
send (100,.1,"a "1',1)
send (110,2,"a 11,1,1)
send 1220 3,"a ,1,1)

TIME ? time6[6]

send (90,0,buffer0,1,block size)
send (100,1,buff,'er1,1,block s #e)
send (110,2,buffer2 ,1,block.size)
spr.d (120,3 buffer3,1,block.size)

TINE ? timeitol
transfer.rate(timeOfo] timel[O] ,1,block.size rate)
actual.rate :=((actuai.rate * j-1)) + rateS/j

SKIP
write.number (actual.rate)
tab (1)

-- inp ut from four channels
actual .rate 0

145

SE KiR[I. FOR repetition]

snd (0,0.."a",)
send 100,1,"a",1
send (l10'2,"a 11,1,11
send (120'3,"a "l

TIME ? time6llo
PAR

receive (50 ,buffer , dunmo
receive(60 ,bufferl , duxyl)
receive (70 ,buffer2 ,dumrny2)
receive (80 buffer3,dummy3)

TIME ? timeltO]
transfer.rate(time0(0] timel[0J,l,block.size rate)
actual.rate :=((actuai.rate * (j-1)) + ratej/j

SKIP *

write~number (actual.rate)
tab)

-all output and input in parallel
actual.rate :=0
SE? i = [1 FOR repetition]

PAR
send (90,0,"a 1",1,1)
send (100,1,''a "j1,J,1
send (10,2,"a",)
send (120,3,1'a 11,1,1)

TIME ? time0(0']
PAR

send (90,0,buffer0.,l,block.size)
send(100,l,bufferl,.,block.size)
send(l10,2,buffer2,',block.size)
send(120,3,buffer3,1l,block.size)
receive 50 ,buffer0 , dumyo)receive;(60 ,bufferl ,duy)
receive (70 ,buffer2 , dummy2)
receive (80 buffer3,dummy3)

TINE ? timeltO]
transfer.rate(timeOIIO] tixel[0Ll ,block.size rate)
actual.rate :=((actuai.rate * (-i)) + rate~/j

SKIP
write.number (actual.rate)

SKPnew.line(1)
new .line (1)

-main program
SEQ

- - some variables initializations
run :=0
answer [BYTE 1] 'z'
repetition 2= 0

-initialization of buffers with bytes
S3k= [I FOR maxblock.size + 1]
E ufferO [BYTE kI '0'
bufferi [BYTE k] Il'1
buffer2 BYTE kI '2'
buffer3 BYTE k] '3'

SKIP

-- program explanation
clear, screen
write.string ("This is an Evaluation Program for the Transputer")
new. line(?)
write.string ("The table presents transfer rates in Kbits/sec")

146

x2-

new line(1)
write.string ("1 for 14 block.sizes in 9 channel combinations "1)
new.line(2)
wri.te.string (11 TYPE (YES if you want to use it "
new.line(1)
write.string ('1 (N)O if you want to quit "
new. line(1)

-validate answer
WHILE ((answer [BYTE 13 <> 'Y') AND (answer [BYTE 1] <> IN'))

SEQ
write.string (1 Type our choice '

Kevboard1 I answer BYTE 1:
capb.:al:ze answer

r~r. an.~wer E

W1H:..E answer ByTE

-- r.i.rnc --e tazle reacer
wr:te ..-.e a e:

-. :,.e 1C 3- -::3sfer Croaramn

answer Z ---Z :o make the next 'ooo be executed

UH23.* answer BY:E 7.' P) AND (answer [BYTE 11 <> 'N';)

write. strir.: :c %mu want another run ? Y)ES or M)O"
Keynoard -answer ,SY7E
caoita.:e answer,
Screen 4' '3
Screen L ! answer [BYTE 11
screen[41 'a'
new. l.ine (

PAR
send (90,0,answer,1 1)
send 200,2.answer,1,2P
send 120,2,answer~,,)
send 2.20, 3, answer, 1 ,1)

-zerscreenh rga
write szring - Press reset button to get back to VAX/VMS U

PAR
operating. system
user. intertace:

147]

-- SC PROC transferO.b003
-- PROC transferO.b003 (CHAN AB,C,D,VALUE this.transputer,route.table)
PROC transferO.b003 (CHAN AB C,D,

VALUE thls.transputer,t0,tl,t2,t3.,t4,tS,t6,t7,tS,t9,
tlO,tll,tl2,tl3,tl4,tl5,tl6,tl7) =

-remote os.tds

--- In this place should be imbedded the filed fold *
REMOTE 0.TDS, which contains the source code of the *
Soperating system for remote transputers. *
it is fully documented in Appendix E. *

-- ?ROC userO
?ROC userO =

-- zonstants and .,ariabies deciarations
DEF sizetable = TABLE 1 1, 2, 4, 3, 16, 32, 64, 128, 256, 512,

1024, 1280, 2048, 4096 3:
DEF nr.of.sizes = 14: --- # of entries in the above table
DEF maxblock.size = 4096: --- max from the above table
VAR answer rBYTE 2' - user's choice in continue or cuit
VAR dummvOt?
7AR repetzion

-- PROC transferO
PROC transferO =

-- variable declarations
VAR block.size,

chO [BYTE 2]:
VAR buffer0 'BYTE maxblock.size + 1]
SEQ

-- initialization of buffers
SE3 k = [1 FOR maxblock.size + 1]5EO

SufferO [BYTE k] := '0'
SKIP

SE i = [0 FOR nr.of.sizes]

6lock.size : sizetable~i]
-- input and output hancling
-i nput from one channel
SE2 j = [1 FOR repetition]

receive (90,ch ,dummy').
rective '90 buff-er0,dummy0)

SKIP

-- output to one channel
SEEj = [1 FOR repetition]

receive /90,chOdummyo)
send(50,10,buffer0,1,!)iock.size)

SKIP

-- input from two channels
SE3Ej = (I FOR repetition]

receive (90,chOdummy0)
receive 90,buffer0,dummyo)

SKIP

-- output to two channels
SEJ= [1 FOR repetition]

receive (90,chO,dummyo)

148

'.% % % . . . - . - -- % -. ,. % - - - * - % % . *. % % . % % . % . . % % . -. %+% % ".-, . ,

wrwr~wA7 w~"%FCwrX'q wX~xVY

SKPsend(50,10,buffer0,l ,block.size)

-- input from three channels
SEj Q l(FOR repetition]

receive (90,ch0, dunmo)
SKPreceive (90, bufferO, durmyO)

--,output to three channels
SE j = [1 FOR repetition]

receive (90,cho, dummy0)
send(50,10,buffero,l,block.size)

SKIP

- - inout from four channels
SEQ 3 = 1 FOR repetition]

SEQ
receive (90,ch0,duny)

SKPreceive (9,buffer0, aummyO)

-outnut to four channels
SEQ [I -70R repetition]

receive (90,ch0, durnmy ocksie

SKIPed5,0bfer,~lc~ie

-all output and input in parallel
SEQ j = [1i FOR repetition]

SEQ
receive K 90, chO ,dummyO0)
PAR

receive (90,bufferO,dummyO)
SKPsend(50,10,buffer0,l,block.size)

SKIP

-main program
SEQ

repetition :=20
answer [BYTE I1.1ly
WHILE answerIBYTE 1]= Y

SEQ-

receive (90,answer,dummy0)

PAR
operating. system
userO

149

-- SC PROC transferl.b003
-- PROC transferl.b003 (CHAN A,B,C,D, VALUE this.transputer, route.table)
PROC transferl.b003 (CHAN A,B C,D,

VALUE this.trans puter,
tO,tlt2,t3,t4,t5,t6,t7,t8,t9,
tlO,tlltl2,tl3,tl4,tl5,tl6,tl7) =

-remote os.tds

--- In this place should be imbedded the filed fold *
--- REMOTE OS.TDS, which contains the source code of the *
--- operating system for remote transputers. *1, is fuily documented in Appendix E.*

-- ?ROC user!
PROC userl =

-- constants and variables declarations
DEF sizetabie = TABLE [1, 2, 4, 8, 16, 32, 64, 128, 256, 512,

1024, 1280, 2048, 4096 1:
DEF nr.of.sizes = 14: --- # of entries in the above table
nEF maxblock.size = 4096: --- max from the above table
AR answer TBYTE 2] --- user's choice in continue or quit

"'A .- epeti:ion:

-- PROC trans:er0
z-ROC transferO =

-- variable declarations
VAR block.size,

Cho [BYTE 2]:
7AR bufferO [BYTE maxblock.size + 1]:

-- initialization of buffers
5E Ek = [I FOR maxblock.size + 1J

bufferO [BYTE k] := '0'

SKIP

S i= [0 FOR nr.of.sizes]

S lock.size := sizetablefi]
-i- nput and output handling

-nbut from two channels
r- 7CR repet toni

receive (100,cho,dummyo)
receive (100,buffer0, ummyo)

SKIP

-- output to two channels
SE?: = [I FOR repetition]

:eceve 13o,chO,dummvo)
5end(60,o0,buffer0,I,51ock.size)

SKIP

-- input from three channels
SE : = [I FOR repetition]

receive (100,ch0,dummyO)
receive (100,bufferO,dummyO)

SKIP

-- output to three channels
SE j = (I FOR repetition]

150

-." ." .'. ..'.. ." . ." . , ..'<. .' v.' '.'-) .'...') ''..- '.''. .': ':- -'.."-.'"." " • "- "" " " ""

receive (100ch0,dummy0) "
send(60,10,bffe0,1,51ock.size)

SKIP !
--input from four channels
S j =u[1 FOR repetition]SEE

receive 100,chO, dumny0)
SKIPreceive (100,bux'fer0, ummyo)

-- output to four channels
SE? j = [1 FOR repetition]

receive (i00,chO,dummvy)
send(60,i0,bufferO i,5lock.size)

SKIP

-- all output and input in parallel
SEQ] = [1 FOR repetitionj

SEQ
receive (100,ch0,dummy0)
PAR

receive (100,buffer0,dummvO)
send(60,:0,buffer0,Iblock.size)

SKIPSKI?: '

-- main programsEQ
repetition := 20
answer[BYTE 11 := lY'
WHILE answer[BYTE 1] IT

SEQ .ransfer0
receive (100,answer,dummy0)

PAR
operating.system
userl

151

-n IN -, ro -. -j . -. -. -v -. a -J d-- Y- -7 F77 - 7 , 7 *1 R -2 M . 77.%-v v.

-SC PROC transfer2.b003-- PROC transfer2.b003 (CHAN A,B,C,D,VALUE this.transputerroute.table)
PROC transfer2.b003 (CHAN A,B C,D,

VALUE this.trans uter,tO,t,t2,t3,t4,t5,t6,t7,t8,t9,
tl0,tll,tl2,tl3,tl4,tl5,tl6,tl7)=

-remote os.tds

--- In this place should be imbedded the filed fold *
REMOTE OS.TDS, which contains the source code of the *
operating system for remote transputers. *
It is fully documented in AppendixE.

PROC user2
N PROC user2=

-- constants and variables declarations
DEF sizetable = TABLE [1, 2, 4, 3, 16, 32, 64, 128, 256, 512,

1024, 1280, 2048, 4096]:
DEF nr.of.sizes = 14: --- # of entries in the above table
DEF maxblock.size = 4096: --- max from the above table
VAR answer [BYTE 2] : --- user's choice in continue or auit
VAR dummyO[1]
V;AR repecition

-- PROC transferO
PROC transferO =
-- variable declarations
VAR block.size,

ch0 [BYTE 2]:
VAR bufferO [BYTE maxblock.size + 11:

SEQ
-- initialization of buffers
SEQ k = [1 FOR maxblock.size + 1]

bufferO [BYTE k] := '0'
SKIP

SE3 i = [0 FOR nr.of.sizes]

block.size := sizetable[i]
-- input and output handling
-- inbut from three channels
SEQ j"= [1 FOR repetizionj

SEQ
receive (110,chOdummy0)
receive (110,buffer0,aummyo)

SKIP

-- output to three channels
SEQ j = [1 FOR repetition]

SEQ
receive (110,ch0,dummv0)
send(70,40,buffer0,1,Block.size)SKIP

-- input from four channels
SE j = [1 FOR repetition]

receive (l1O,chOdummyO)
receive l0,bufferO, ummyO)

SKIP

-- output to four channels
SErEj [1 FOR repetition]

152

receive (11O,chO,dumygO)
send(70,1O,buffer O,l,bloc k.size)

SKIP

-all output and input in parallel
SE j = [1 FOR repetition]

receive (11O,ch0,dummy0)
PAR

receive (110,bufferO ,dummya
send(70,1O,bufferO.1,blocK .size)

SKIP
SKIP:

-main program
SEQ

repetition :=20
answer(BYTE 11 := Y
WHILE answerLBYTE 1] = Y

SEQ
trans fe rO
receive (110,answer,dummyO)

PAR
operating. system
user2:

153

SC PROC transfer3.b003
-- PROC transfer3.b003 (CHAN A,B,C,D,VALUE this.transputer,route.table)
PROC transfer3.b003 (CHAN A,B C,D,

VALUE th3s.transputer,
tO,tl,t2,t3,t4,tSt6,t7,t8,t9tl0,tll,tl2,tl3,tl4,tl5,tl6,ti7)=

-remote os.tds

In this place should be imbedded the filed fold *REMOTE OS.TDS, which contains the source code of the *
operating system for remote transputers. *
It is fully documented in Appendix E. *

-*PROC user3
PROC user3 =

-- :onstants and variables declarations
DEF sizetable = TABLE [1, 2, 4, 8, 16, 32, 64, 128, 256, 512,

1024, 1280, 2048, 4096]:
DEF nr.of.sizes = 14: --- # of entries in the above table
DEF maxblock.size = 4096: --- max from the above table
VAR answer [BYTE 2] --- user's choice in continue or quit
VAR dummy0[! :
VAR repet::.on

-- PROC transferO
PROC transferO =

-- variable declarations
VAR block.size,

chO [BYTE 2]:
VAR buffer0 [BYTE maxblock.size + 1]:

SEQ
-- initialization of buffers
SEE k = [1 FOR maxblock.size + 11

SPufferO [BYTE k] := '0'
SKIP

SEQ i = [0 FOR nr.of.sizes]
SElock.size := sizetable i]

-- input and output handling
-- input from four channels
SEQ j = [1 FOR repetition]

SEQ
receive (120,chO,dummyO)
receive (120,buffero,aummy0)

SKIP

output to four channels
SEEj = [1 FOR repetition]

receive (120,ch0,dummy0)
send(80,10,buffer0,1,zlock.size)

SKIP

-- all output and input in parallel
SE Z~j = [1 FOR repetition]

receive (120,ch0,dummyO)
PAR

receive (120,buffer0,dummyO)
send(80,10,buffero,l,block.size)

SKIP
SKIP:

154

del-

* £ i P- -*. t-- . - -Y -w V . V7 . T.

-main program
SEQ

repetition :=20
answer[BYTE 11 : y

* WHILE answer IBYTE 1] =1Y
SEQ

trans fe rO
receive (120,answer,dummyo)

PAR
* operating.system

user3

* 155

-- confiqu ration
-Link Definitions

DEF link~out = 0:
DEF linklout = 1:
DEF link2out = 2:
DEF link3out =3:
DEF link~in=4:

DEF link2in=6:
DEF link3in =7:

DEF root = 10:
DEF rnax~pipes =20:
CHAN pipe [max.pipesl:

PLACED PAR
-- PROCESSOR root
PROCESSOR root

PLACE pipe (0] AT link~in
PL.ACE pipe 2 AT linklin
PLACE pipe (4] AT link2in
PLACE oiDef } AT link3in
PLACE biloe f' AT link~Out
?LACE bibe,131 AT 11iniout
PLACE bibel5i IT link2out
?LACE pi~eM7 AT iink3out

hostproc (pipefO] ,pipeF2] ,pioer41 ,pipe[6J.

4,5,6,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

- - PROCESSOR 0
PROCESSOR 0

PLACE pipe [11 AT link~in :
PLACE pipe 9] AT linklin :
PLACE pipe 0] AT link~out:
PLACE pipe 8 AT linklout:

transferO.b003 (ipe(1] ,pipe(9] ,pipe(0j ,pipe[8],

0,6,,5,7,0,0,0,0,0,0,4,0,0,0,0,0,O,0)

-- PROCESSOR 1
PROCESSOR I

PLACE pipe(3l AT li4nk~in
PLACE pipeLIO] AT linklin
PLACE pipe12] AT 2ink~out
PLACE pipe[1 1] AT linklout

transferl.b003 (ipe(3j,pipe[10] ,pipe[2],pipe[11],

7,0,6,5,0,0,0,0,0,0,4,0,0,0,0,0,0,0)

-- PROCESSOR2
PROCESSOR 2'
PLACE oice,5' AT link~in
PLACE kip '81 AT linklin
PLACE pipe 41 AT link~out:
PLACE pipe(9] AT linklout:

transfer2.b003 (pipe[S] ,pipe[8] ,pipell4] ,pipe[91,

5,7,0,6,0,0,0,0,0,0,4,0,0,0,0,0,0,0)

156

%i

-- IK7 PROCESSOR K3 I W K'x-ov

PROCESSOR 3
PROCESSOR 3

PLACE pipe 71 AT ink0in :
PLACE pipe 1) AT linklin :
PLACE pipe 6] AT link~out:
PLACE pipe 101 AT linklout :

transfer3.b003 (3ipe[7],pipe Ii] ,pipe[6] ,pipe[10],

6,5,7,0,0 0,0,0,0,0,4,0,0,0,0,0,0,0)

157

" %.., , ." '. -;.'.. " .'-.,""- " '. - .' .''. .','._,L' ,:.' " "" ,."",''. '':"-.-' -'- ", " "" " "" . , " "". ""'"""-21

!. :A -J . ,w.:. -"A~ 'w'i ry. d ; . ,) ' "
)' - '

. ,1.. , , '~ .'7 , ~ ~) V~y x . ._

Im

LIST OF REFERENCES

1. Garret, D. R., A Software System Implementation Guide and System Prototyping
Facility for the MCORTEX Executive on the Real Time Cluster, M.S. Thesis,
Naval Postgraduate School, Monterey, California, December 1986.

2. Rowe, W. R., .Idaptio,,z ,f WCORTEX to the AEGIS Simulation Environment,
M.S. Thesis. Naval Postgraduate School. Monterey, California. June 1984.

3. INMOS Limited, The Transputer Family, June 1986.

4. I'N MOS Limited, I.S BO01 Evaluation Board UserManual. 1985.

5. INMOS Limited, I.VS 2003 Evaluation Board User Manual, 1985.

6. INMOS Limited, IMS B004 Evaluation Board User Manual, 1985.

7. Evin, B. , Implementation of a Serial Delay Insertion Type Loop Communication
for a Real Time Multitransputer System. M.S. Thesis, Naval Postgraduate School,
Monterey, California, June 1985.

8. Selcuk, Z., Implementation of a Serial Communication Process for a Fault
Tolerant, Real Time, Multitransputer Operating System, M.S. Thesis, Naval
Postgraduate School, Monterey, California, 1984.

9. Vanni, J. F., Test and Evaluation of the Transputer in a Muititransputer System
Configuration, M.S. Thesis., Naval Postgraduate School, Monterey, California,
June 1987.

10. INMOS Limited, IMS D600 Transputer Development Syitem, 1985.

11. Shepherd Roger, Extraordinary use of transputer links, INMOS Technical note I.
November 1986.

158

7I

- -- ,. 'A

BIBLIOGRAPHY

Heath M. T,, The Hyvercube: A Tutorial Overview, Oak Ridge 'National Laboratory,
19S6.Z

INMOS Corporation, Compiler Writers Guide, Draft, 1986.%

INMO10S Limited. OCC.-M Programming Manual, 1983.

INNIOS Liie.Transpuitor Refrtrnce M anual. October 1986.

P-eterson & Silherschatz. 'Oceratnnq Svstems Concepts. Addison-Weslev Publishing C3..
Inc.. i983.

Tanenbaum A. S., Computer ,Vetworks, Prentice Hall, New Jersey, 1981.

Weitzmnan C.. Dis.,ributed Mficro' Minicomputer Systems, Prentice---all, New JeIrsey,

159

_Ile

INITIAL DISTRIBUTION LIST

No. Copies
I. Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22304-61,15

2. Library. Code 0142 2
Naval Postgraduate School
Monterey. CA 93943-5002

3. Department Chairman. Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, CA 3943

4. Dr. Uno R. Kodres. Code 52Kr
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93942

5. Dr. Daniel L. Davis, Code 52Dv
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

6. Daniel Green. Cnode 20F
Naval Surface Weapons Center
Dahlgren, VA 22449

7. Jerry Gaston, Code N24
Naval Surface Weapons Center S
Dahlgren. VA 22449

S. CAPT. J. Hood. USNo
PMS 400B5
Naval Sea Systems Command
Washington D.C. 20362

9. RCA AEGIS Repositorv
RCA Corporation
Government Svstems Division
Mail Stop 127-327
Moorestown, NJ 08057

10. Library (Code E33-05)
Naval Surface Weapons Center
Dahlgren, VA 22449

160

• i!IS

11. Dr. M. J. Gralia
Applied Physics Laboratory
John Hopkins Road
Laurel, MD 20702

12. Dana Small, Code 8242
Naval Ocean Systems Center
San Diego, CA 92152

13. Estado Maior da Armada
Brazilian Naval Commission
4706 Wisconsin Ave., NW.
Washington, DC 20016

14. Diretona de Ensino da .\larinha
Brazilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington. DC 20016

15. Diretoria de Armamento o Comunica 6es da Marinha
3razilian Naval Commission
4706 Wisconsin Ave., N.W.
Washington. DC 20016

16. Instituto de Pesquisas da Marinha
Brazilian Naval Commission
"706 Wisconsin Ave.. N.W.
Washington, DC 20016

17. Instituto Mititar de Engenharia
Praia Vermelha. Urca
Rio de Janeiro, RJ
CEP 20000, BRAZIL

18. Instituto Tecnoldgico da Aeronautica
$5o Jose dos Campos. SP
CEP 11000 B,RAZIL

19. Pontificia Universidade Catdlica
R. Marques de Sdo Vicente 225, Gavea
Rio de Janeiro, RJ
CEP 20000 , BRAZIL

20. Peze Wilson
IN.MOS CORPORATION
P.O. Box 16000
Colorado Springs, CO 80935-16000

21. David May
INMOS LTD.
1000 Aztec
West Almondsbury, Bristol, BS12 4SQ, UK

161

S.

.I

22. MAJ/USAF R. A. Adams, Code 52Ad
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

23. LT. Mauricio M. Cordeiro, Br. Navy2
Brazilian 'Naval Commission (DACM)
4706 Wisconsin Ave., N.W.
Washington. DC 20016

* 24. LCDR. Gilberto F Mota, Br. Navy
Brazilian Navai Commission (DACM)
-4706 Wisconsin Ave., N.W.
Washington. DC 20016

* 25. LCDR. J. Vanni Filho, Br. Navy1
Brazilian Naval Commission (DACM)
4706 Wisconsin Ave., N.W.
Washington. DC 20016

162

J"r

%9," .~

~-

", .

0

"-.0

% . % •~

' ., '

aT -'." a .

ma9'
ma-aa

, ., , . .p '. . ".'I .. - . " #.., ,. "% '," -• ' , " " .. .'_ _ _ _ _ _ _ _ _ _ ' -. "I. - 0" . . " " - - . 'o,", ,"., , . . ,, ., "., ." S s-#'.. . -,'._.- - . - -..- y ," - .. ". " .'..- "...-- ..-- ," . . -- . , " , '.

* % -. , -..- :, 9: :.9., -.. ,,' , ,*. .a-... a--.a-. - .. , -°..-. . .*.. .a. - ..a: . ,'

